基于FPGA的SDRAM控制器设计(1)

article/2025/10/26 11:53:06

基于FPGA的SDRAM初始化配置

  • SDRAM简述
  • SDRAM的引脚及作用
  • SDRAM初始化时序控制
  • SDRAM上电时序代码
  • SDRAM测试模块的代码
  • 仿真测试结果
  • 参考文献
  • 总结

SDRAM简述

SDRAM( Synchronous Dynamic Random Access Memory),同步动态随机存储器。同步是指 Memory 工作需要同步时钟,内部的命令的发送与数据的传输都以它为基准;动态是指存储阵列需要不断的刷新来保证存储的数据不丢失,因为 SDRAM 中存储数据是通过电容来工作的,大家知道电容在自然放置状态是会有放电的,如果电放完了,也就意味着 SDRAM 中的数据丢失了,所以 SDRAM需要在电容的电量放完之前进行刷新;随机是指数据不是线性依次存储,而是自由指定地址进行数据的读写。

SDRAM作为FPGA处理吞吐量较大的数据时必须选择的存储器件,因为FPGA中存储空间有效。例如想存一张1080P的图片,单单靠FPGA本身的M9K或M18K是远远达不到的,所以我们要利用SDRAM作为缓存0。

要想确定这个存储单 元,只需要知道行地址( row address)和列地址( col address)与bank地址就可以
了,SDRAM总容量的计算公式如下:
SDRAM 容量 = 数据位宽 x 存储单元数量(行地址 x 列地址 x Bank 数)

SDRAM的引脚及作用

从技术手册中很容易发现,SDRAM的常见的引脚及作用:
在这里插入图片描述
每个引脚的含义如下:

在这里插入图片描述
从上面我们很容易知道SDRAM的外设引脚及每个引脚的作用,这里如果还有不清出的地方可以去查找技术手册,SDRAM的技术手册比较简单。

SDRAM初始化时序控制

这里说明要写一个完整的SDRAM控制器需要五个模块,上电初始化模块、刷新模块、读模块、写模块、仲裁模块。首先能否独立写出SDRAM控制器是作为FPGA是否入门的一个很好的衡量措施。我们首先写SDRAM的初始化控制,这里查找技术手册可以知道,SDRAM上电初始化的空时时序如下:
在这里插入图片描述
这里提醒一定要注意A10,因为该信号可以选择对单个bank操作还是对所有bank操作,而且在后面的读写操作中该信号还有控制状态机跳转的作用。
上面时间具体的值也可以查找技术手册:
在这里插入图片描述
从图中我们可以看到COMMAND信号,该信号是由sdram的四个控制信号构成,即sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n,具体每个命令的编码如下:
在这里插入图片描述
从上面的表格中,很容易解析出如下命令:
在这里插入图片描述
从SDRAM初始化的时序图中很容易想到利用线性序列机来写,也是很基础的逻辑代码。这里特别注意,在初始化的时候有一个状态是加载模式寄存器,模式寄存器的编码有特定的含义,这里我们从技术手册中找到,如下:
在这里插入图片描述
我们一般选择的模式是4突发,读数据3个时钟延时,Sequential模式,突发读写模式,具体的编码可以去程序中查找。

SDRAM上电时序代码

top模块的代码:

`timescale 1ns / 1ps
// *********************************************************************************
// Project Name : OSXXXX
// Author       : zhangningning
// Email        : nnzhang1996@foxmail.com
// Website      : 
// Module Name  : sdram_top.v
// Create Time  : 2020-02-09 17:22:24
// Editor       : sublime text3, tab size (4)
// CopyRight(c) : All Rights Reserved
//
// *********************************************************************************
// Modification History:
// Date             By              Version                 Change Description
// -----------------------------------------------------------------------
// XXXX       zhangningning          1.0                        Original
//  
// *********************************************************************************module sdram_top(//System Interfacesinput                   sclk            ,input                   rst_n           ,//SDRAM Interfacesoutput  wire            sdram_clk       ,output  wire            sdram_cke       ,output  wire            sdram_cs_n      ,output  wire            sdram_cas_n     ,output  wire            sdram_ras_n     ,output  wire            sdram_we_n      ,output  wire    [ 1:0]  sdram_bank      ,output  wire    [11:0]  sdram_addr      ,output  wire    [ 1:0]  sdram_dqm       ,inout           [15:0]  sdram_dq        
);//========================================================================================\
//**************Define Parameter and  Internal Signals**********************************
//========================================================================================/
//sdram_init
wire                [ 3:0]  init_cmd        ;
wire                [11:0]  init_addr       ;
wire                        init_done       ;//========================================================================================\
//**************     Main      Code        **********************************
//========================================================================================/
assign      sdram_dqm       =       2'b00;
assign      sdram_clk       =       ~sclk;
assign      {sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n}      =       init_cmd;
assign      sdram_addr      =       init_addr;
assign      sdram_cke       =       1'b1;
assign      sdram_bank      =       2'b00;sdram_init sdram_init_inst(//System Interfaces.sclk                   (sclk                   ),.rst_n                  (rst_n                  ),//SDRAM Interfaces.sdram_cmd              (init_cmd               ),.sdram_addr             (init_addr              ),//Others.init_done              (init_done              )
);endmodule

SDRAM上电初始化的代码:

`timescale 1ns / 1ps
// *********************************************************************************
// Project Name : OSXXXX
// Author       : zhangningning
// Email        : nnzhang1996@foxmail.com
// Website      : 
// Module Name  : sdram_init.v
// Create Time  : 2020-02-09 16:20:31
// Editor       : sublime text3, tab size (4)
// CopyRight(c) : All Rights Reserved
//
// *********************************************************************************
// Modification History:
// Date             By              Version                 Change Description
// -----------------------------------------------------------------------
// XXXX       zhangningning          1.0                        Original
//  
// *********************************************************************************module sdram_init(//System Interfacesinput                   sclk            ,input                   rst_n           ,//SDRAM Interfacesoutput  reg     [ 3:0]  sdram_cmd       ,output  reg     [11:0]  sdram_addr      ,//Othersoutput  reg             init_done  
);//========================================================================================\
//**************Define Parameter and  Internal Signals**********************************
//========================================================================================/
localparam  DELAY_200US =  20000           ;
//SDRAM Command
localparam  NOP         =  4'b0111          ;
localparam  PRE         =  4'b0010          ;
localparam  AREF        =  4'b0001          ;
localparam  MSET        =  4'b0000          ;reg                 [14:0]  cnt_200us       ;
reg                         flag_200us      ;
reg                 [ 4:0]  cnt_cmd         ;//========================================================================================\
//**************     Main      Code        **********************************
//========================================================================================/
always @(posedge sclk or negedge rst_n)if(rst_n == 1'b0)cnt_200us       <=      11'd0;else if(flag_200us == 1'b0)cnt_200us       <=      cnt_200us + 1'b1;elsecnt_200us       <=      cnt_200us;always @(posedge sclk or negedge rst_n)if(rst_n == 1'b0)flag_200us      <=      1'b0;else if(cnt_200us >= DELAY_200US) flag_200us      <=      1'b1;elseflag_200us      <=      flag_200us;always @(posedge sclk or negedge rst_n)if(rst_n == 1'b0)cnt_cmd         <=      5'd0;else if(flag_200us == 1'b1 && cnt_cmd <= 5'd19)cnt_cmd         <=      cnt_cmd + 1'b1;else cnt_cmd         <=      cnt_cmd;always @(posedge sclk or negedge rst_n)if(rst_n == 1'b0)sdram_cmd       <=      NOP;else case(cnt_cmd)1       :   sdram_cmd       <=      PRE;3       :   sdram_cmd       <=      AREF;11      :   sdram_cmd       <=      AREF;19      :   sdram_cmd       <=      MSET;default :   sdram_cmd       <=      NOP;endcasealways @(posedge sclk or negedge rst_n)if(rst_n == 1'b0)sdram_addr      <=      12'b0100_0000_0000;else if(cnt_cmd == 5'd19) sdram_addr      <=      12'b0000_0011_0010;elsesdram_addr      <=      12'b0100_0000_0000;always @(posedge sclk or negedge rst_n)if(rst_n == 1'b0)init_done       <=      1'b0; else if(cnt_cmd > 5'd19) init_done       <=      1'b1;elseinit_done       <=      init_done;endmodule

从上面的代码中不难发现,其实SDRAM的上电初始化代码就是一个线性序列机。

SDRAM测试模块的代码

SDRAM的测试要有仿真模型文件,但是我感觉这个仿真模型的文件在读操作、4突发操作的情况下第4个数据持续时间短,但是现在没把板子带回家没办法验证,但是很容易规避这个问题,就是读出的数据使用SDRAM的时钟来锁存,这个问题等我们到SDRAM读操作的时候具体描述。仿真的顶层测试文件如下:

`timescale 1ns / 1ps
`define CLOCK    10
// *********************************************************************************
// Project Name : OSXXXX
// Author       : zhangningning
// Email        : nnzhang1996@foxmail.com
// Website      : 
// Module Name  : sdram_init_tb.v
// Create Time  : 2020-02-09 17:10:08
// Editor       : sublime text3, tab size (4)
// CopyRight(c) : All Rights Reserved
//
// *********************************************************************************
// Modification History:
// Date             By              Version                 Change Description
// -----------------------------------------------------------------------
// XXXX       zhangningning          1.0                        Original
//  
// *********************************************************************************module sdram_init_tb;
reg                         sclk            ;
reg                         rst_n           ;
wire                        sdram_clk       ;
wire                        sdram_cke       ;
wire                        sdram_cs_n      ;
wire                        sdram_cas_n     ;
wire                        sdram_ras_n     ;
wire                        sdram_we_n      ;
wire    [ 1:0]              sdram_bank      ;
wire    [11:0]              sdram_addr      ;
wire    [ 1:0]              sdram_dqm       ;
wire    [15:0]              sdram_dq        ;initial beginsclk        =       1'b0;rst_n       <=      1'b0;#(100*`CLOCK);rst_n       <=      1'b1;
end
always  #(`CLOCK/2)     sclk        =       ~sclk;  sdram_top sdram_top_inst(//System Interfaces.sclk                   (sclk                   ),.rst_n                  (rst_n                  ),//SDRAM Interfaces.sdram_clk              (sdram_clk              ),.sdram_cke              (sdram_cke              ),.sdram_cs_n             (sdram_cs_n             ),.sdram_cas_n            (sdram_cas_n            ),.sdram_ras_n            (sdram_ras_n            ),.sdram_we_n             (sdram_we_n             ),.sdram_bank             (sdram_bank             ),.sdram_addr             (sdram_addr             ),.sdram_dqm              (sdram_dqm              ),.sdram_dq               (sdram_dq               )
);defparam        sdram_model_plus_inst.addr_bits =       12;
defparam        sdram_model_plus_inst.data_bits =       16;
defparam        sdram_model_plus_inst.col_bits  =       9;
defparam        sdram_model_plus_inst.mem_sizes =       2*1024*1024;            // 2Msdram_model_plus sdram_model_plus_inst(.Dq                     (sdram_dq               ), .Addr                   (sdram_addr             ), .Ba                     (sdram_bank             ), .Clk                    (sdram_clk              ), .Cke                    (sdram_cke              ), .Cs_n                   (sdram_cs_n             ), .Ras_n                  (sdram_ras_n            ), .Cas_n                  (sdram_cas_n            ), .We_n                   (sdram_we_n             ), .Dqm                    (sdram_dqm              ),.Debug                  (1'b1                   )
);endmodule

SDRAM的仿真模型文件如下:

/***************************************************************************************
作者:	李晟
2003-08-27	V0.1	李晟 添加内存模块倒空功能,在外部需要创建事件:sdram_r ,本SDRAM的内容将会按Bank 顺序damp out 至文件sdram_data.txt 中
×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××*/
//2004-03-04	陈乃奎	修改原程序中将BANK的数据转存入TXT文件的格式
//2004-03-16	陈乃奎	修改SDRAM 的初始化数据
//2004/04/06	陈乃奎	将SDRAM的操作命令以字符形式表示,以便用MODELSIM监视
//2004/04/19	陈乃奎	修改参数 parameter tAC  =   8;
//2010/09/17	罗瑶	修改sdram的大小,数据位宽,dqm宽度;
/****************************************************************************************
*
*    File Name:  sdram_model.V  
*      Version:  0.0f
*         Date:  July 8th, 1999
*        Model:  BUS Functional
*    Simulator:  Model Technology (PC version 5.2e PE)
*
* Dependencies:  None
*
*       Author:  Son P. Huynh
*        Email:  sphuynh@micron.com
*        Phone:  (208) 368-3825
*      Company:  Micron Technology, Inc.
*        Model:  sdram_model (1Meg x 16 x 4 Banks)
*
*  Description:  64Mb SDRAM Verilog model
*
*   Limitation:  - Doesn't check for 4096 cycle refresh
*
*         Note:  - Set simulator resolution to "ps" accuracy
*                - Set Debug = 0 to disable $display messages
*
*   Disclaimer:  THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY 
*                WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY 
*                IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
*                A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
*
*                Copyright ?1998 Micron Semiconductor Products, Inc.
*                All rights researved
*
* Rev   Author          Phone         Date        Changes
* ----  ----------------------------  ----------  ---------------------------------------
* 0.0f  Son Huynh       208-368-3825  07/08/1999  - Fix tWR = 1 Clk + 7.5 ns (Auto)
*       Micron Technology Inc.                    - Fix tWR = 15 ns (Manual)
*                                                 - Fix tRP (Autoprecharge to AutoRefresh)
*
* 0.0a  Son Huynh       208-368-3825  05/13/1998  - First Release (from 64Mb rev 0.0e)
*       Micron Technology Inc.
****************************************************************************************/`timescale 1ns / 100psmodule sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);parameter addr_bits =	11;parameter data_bits = 	32;parameter col_bits  =	8;parameter mem_sizes =	1048576*2-1;//1 Meg inout     [data_bits - 1 : 0] Dq;input     [addr_bits - 1 : 0] Addr;input                 [1 : 0] Ba;input                         Clk;input                         Cke;input                         Cs_n;input                         Ras_n;input                         Cas_n;input                         We_n;input                 [3 : 0] Dqm;          //高低各8bit//added by xzliinput			  Debug;reg       [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据reg       [data_bits - 1 : 0] Bank1 [0 : mem_sizes];reg       [data_bits - 1 : 0] Bank2 [0 : mem_sizes];reg       [data_bits - 1 : 0] Bank3 [0 : mem_sizes];reg                   [1 : 0] Bank_addr [0 : 3];                // Bank Address Pipelinereg        [col_bits - 1 : 0] Col_addr [0 : 3];                 // Column Address Pipelinereg                   [3 : 0] Command [0 : 3];                  // Command Operation Pipelinereg                   [3 : 0] Dqm_reg0, Dqm_reg1;               // DQM Operation Pipelinereg       [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;reg       [addr_bits - 1 : 0] Mode_reg;reg       [data_bits - 1 : 0] Dq_reg, Dq_dqm;reg       [col_bits - 1 : 0] Col_temp, Burst_counter;reg                           Act_b0, Act_b1, Act_b2, Act_b3;   // Bank Activatereg                           Pc_b0, Pc_b1, Pc_b2, Pc_b3;       // Bank Prechargereg                   [1 : 0] Bank_precharge     [0 : 3];       // Precharge Commandreg                           A10_precharge      [0 : 3];       // Addr[10] = 1 (All banks)reg                           Auto_precharge     [0 : 3];       // RW AutoPrecharge (Bank)reg                           Read_precharge     [0 : 3];       // R  AutoPrechargereg                           Write_precharge    [0 : 3];       //  W AutoPrechargeinteger                       Count_precharge    [0 : 3];       // RW AutoPrecharge (Counter)reg                           RW_interrupt_read  [0 : 3];       // RW Interrupt Read with Auto Prechargereg                           RW_interrupt_write [0 : 3];       // RW Interrupt Write with Auto Prechargereg                           Data_in_enable;reg                           Data_out_enable;reg                   [1 : 0] Bank, Previous_bank;reg       [addr_bits - 1 : 0] Row;reg        [col_bits - 1 : 0] Col, Col_brst;// Internal system clockreg                           CkeZ, Sys_clk;reg	[21:0]	dd;// Commands Decodewire      Active_enable    = ~Cs_n & ~Ras_n &  Cas_n &  We_n;wire      Aref_enable      = ~Cs_n & ~Ras_n & ~Cas_n &  We_n;wire      Burst_term       = ~Cs_n &  Ras_n &  Cas_n & ~We_n;wire      Mode_reg_enable  = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;wire      Prech_enable     = ~Cs_n & ~Ras_n &  Cas_n & ~We_n;wire      Read_enable      = ~Cs_n &  Ras_n & ~Cas_n &  We_n;wire      Write_enable     = ~Cs_n &  Ras_n & ~Cas_n & ~We_n;// Burst Length Decodewire      Burst_length_1   = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];wire      Burst_length_2   = ~Mode_reg[2] & ~Mode_reg[1] &  Mode_reg[0];wire      Burst_length_4   = ~Mode_reg[2] &  Mode_reg[1] & ~Mode_reg[0];wire      Burst_length_8   = ~Mode_reg[2] &  Mode_reg[1] &  Mode_reg[0];// CAS Latency Decodewire      Cas_latency_2    = ~Mode_reg[6] &  Mode_reg[5] & ~Mode_reg[4];wire      Cas_latency_3    = ~Mode_reg[6] &  Mode_reg[5] &  Mode_reg[4];// Write Burst Modewire      Write_burst_mode = Mode_reg[9];wire      Debug;		// Debug messages : 1 = On; 0 = Offwire      Dq_chk           = Sys_clk & Data_in_enable;      // Check setup/hold time for DQreg		[31:0]	mem_d;event	sdram_r,sdram_w,compare;assign    Dq               = Dq_reg;                        // DQ buffer// Commands Operation`define   ACT       0`define   NOP       1`define   READ      2`define   READ_A    3`define   WRITE     4`define   WRITE_A   5`define   PRECH     6`define   A_REF     7`define   BST       8`define   LMR       9//    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    parameter tAC  =   8;	//test 6.5
//    parameter tHZ  =   7.0;
//    parameter tOH  =   2.7;
//    parameter tMRD =   2.0;     // 2 Clk Cycles
//    parameter tRAS =  44.0;
//    parameter tRC  =  66.0;
//    parameter tRCD =  20.0;
//    parameter tRP  =  20.0;
//    parameter tRRD =  15.0;
//    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
//    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)// Timing Parameters for -7 (PC143) and CAS Latency = 3parameter tAC  =   6.5;	//test 6.5parameter tHZ  =   5.5;parameter tOH  =   2;parameter tMRD =   2.0;     // 2 Clk Cyclesparameter tRAS =  48.0;parameter tRC  =  70.0;parameter tRCD =  20.0;parameter tRP  =  20.0;parameter tRRD =  14.0;parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)// Timing Check variableinteger   MRD_chk;integer   WR_counter [0 : 3];time      WR_chk [0 : 3];time      RC_chk, RRD_chk;time      RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;time      RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;time      RP_chk0, RP_chk1, RP_chk2, RP_chk3;integer	test_file;//*****display the command of the sdram**************************************parameter	Mode_Reg_Set	=4'b0000;parameter	Auto_Refresh	=4'b0001;parameter	Row_Active	=4'b0011;parameter	Pre_Charge	=4'b0010;parameter	PreCharge_All	=4'b0010;parameter	Write		=4'b0100;parameter	Write_Pre	=4'b0100;parameter	Read		=4'b0101;parameter	Read_Pre	=4'b0101;parameter	Burst_Stop	=4'b0110;parameter	Nop		=4'b0111;parameter	Dsel		=4'b1111;wire	[3:0]	sdram_control;reg			cke_temp;reg		[8*13:1]	sdram_command;always@(posedge Clk)cke_temp<=Cke;assign	sdram_control={Cs_n,Ras_n,Cas_n,We_n};always@(sdram_control or cke_temp)begincase(sdram_control)Mode_Reg_Set:	sdram_command<="Mode_Reg_Set";Auto_Refresh:	sdram_command<="Auto_Refresh";Row_Active:	sdram_command<="Row_Active";Pre_Charge:	sdram_command<="Pre_Charge";Burst_Stop:	sdram_command<="Burst_Stop";Dsel:		sdram_command<="Dsel";Write:		if(cke_temp==1)sdram_command<="Write";elsesdram_command<="Write_suspend";Read:		if(cke_temp==1)sdram_command<="Read";elsesdram_command<="Read_suspend";Nop:		if(cke_temp==1)sdram_command<="Nop";elsesdram_command<="Self_refresh";default:	sdram_command<="Power_down";endcaseend//*****************************************************initial begin//test_file=$fopen("test_file.txt");endinitial beginDq_reg = {data_bits{1'bz}};{Data_in_enable, Data_out_enable} = 0;{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;{WR_chk[0], WR_chk[1], WR_chk[2], WR_chk[3]} = 0;{WR_counter[0], WR_counter[1], WR_counter[2], WR_counter[3]} = 0;{RW_interrupt_read[0], RW_interrupt_read[1], RW_interrupt_read[2], RW_interrupt_read[3]} = 0;{RW_interrupt_write[0], RW_interrupt_write[1], RW_interrupt_write[2], RW_interrupt_write[3]} = 0;{MRD_chk, RC_chk, RRD_chk} = 0;{RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;{RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;{RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;$timeformat (-9, 0, " ns", 12);//$readmemh("bank0.txt", Bank0);//$readmemh("bank1.txt", Bank1);//$readmemh("bank2.txt", Bank2);//$readmemh("bank3.txt", Bank3);
/*  	for(dd=0;dd<=mem_sizes;dd=dd+1)beginBank0[dd]=dd[data_bits - 1 : 0];Bank1[dd]=dd[data_bits - 1 : 0]+1;Bank2[dd]=dd[data_bits - 1 : 0]+2;Bank3[dd]=dd[data_bits - 1 : 0]+3;end
*/        	initial_sdram(0);endtask	initial_sdram; input		data_sign;reg	[3:0]	data_sign;for(dd=0;dd<=mem_sizes;dd=dd+1)beginmem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};if(data_bits==16)beginBank0[dd]=mem_d[15:0];Bank1[dd]=mem_d[15:0];Bank2[dd]=mem_d[15:0];Bank3[dd]=mem_d[15:0];endelse if(data_bits==32)beginBank0[dd]=mem_d[31:0];Bank1[dd]=mem_d[31:0];Bank2[dd]=mem_d[31:0];Bank3[dd]=mem_d[31:0];endend	endtask// System clock generatoralwaysbegin@(posedge Clk)beginSys_clk = CkeZ;CkeZ = Cke;end@(negedge Clk) beginSys_clk = 1'b0;endendalways @ (posedge Sys_clk) begin// Internal Commamd PipelinedCommand[0] = Command[1];Command[1] = Command[2];Command[2] = Command[3];Command[3] = `NOP;Col_addr[0] = Col_addr[1];Col_addr[1] = Col_addr[2];Col_addr[2] = Col_addr[3];Col_addr[3] = {col_bits{1'b0}};Bank_addr[0] = Bank_addr[1];Bank_addr[1] = Bank_addr[2];Bank_addr[2] = Bank_addr[3];Bank_addr[3] = 2'b0;Bank_precharge[0] = Bank_precharge[1];Bank_precharge[1] = Bank_precharge[2];Bank_precharge[2] = Bank_precharge[3];Bank_precharge[3] = 2'b0;A10_precharge[0] = A10_precharge[1];A10_precharge[1] = A10_precharge[2];A10_precharge[2] = A10_precharge[3];A10_precharge[3] = 1'b0;// Dqm pipeline for ReadDqm_reg0 = Dqm_reg1;Dqm_reg1 = Dqm;// Read or Write with Auto Precharge Counterif (Auto_precharge[0] == 1'b1) beginCount_precharge[0] = Count_precharge[0] + 1;endif (Auto_precharge[1] == 1'b1) beginCount_precharge[1] = Count_precharge[1] + 1;endif (Auto_precharge[2] == 1'b1) beginCount_precharge[2] = Count_precharge[2] + 1;endif (Auto_precharge[3] == 1'b1) beginCount_precharge[3] = Count_precharge[3] + 1;end// tMRD CounterMRD_chk = MRD_chk + 1;// tWR Counter for WriteWR_counter[0] = WR_counter[0] + 1;WR_counter[1] = WR_counter[1] + 1;WR_counter[2] = WR_counter[2] + 1;WR_counter[3] = WR_counter[3] + 1;// Auto Refreshif (Aref_enable == 1'b1) beginif (Debug) $display ("at time %t AREF : Auto Refresh", $time);// Auto Refresh to Auto Refreshif (($time - RC_chk < tRC)&&Debug) begin$display ("at time %t ERROR: tRC violation during Auto Refresh", $time);end// Precharge to Auto Refreshif (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin$display ("at time %t ERROR: tRP violation during Auto Refresh", $time);end// Precharge to Refreshif (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin$display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);end// Record Current tRC timeRC_chk = $time;end// Load Mode Registerif (Mode_reg_enable == 1'b1) begin// Decode CAS Latency, Burst Length, Burst Type, and Write Burst Modeif (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) beginMode_reg = Addr;if (Debug) begin$display ("at time %t LMR  : Load Mode Register", $time);// CAS Latencyif (Addr[6 : 4] == 3'b010)$display ("                            CAS Latency      = 2");else if (Addr[6 : 4] == 3'b011)$display ("                            CAS Latency      = 3");else$display ("                            CAS Latency      = Reserved");// Burst Lengthif (Addr[2 : 0] == 3'b000)$display ("                            Burst Length     = 1");else if (Addr[2 : 0] == 3'b001)$display ("                            Burst Length     = 2");else if (Addr[2 : 0] == 3'b010)$display ("                            Burst Length     = 4");else if (Addr[2 : 0] == 3'b011)$display ("                            Burst Length     = 8");else if (Addr[3 : 0] == 4'b0111)$display ("                            Burst Length     = Full");else$display ("                            Burst Length     = Reserved");// Burst Typeif (Addr[3] == 1'b0)$display ("                            Burst Type       = Sequential");else if (Addr[3] == 1'b1)$display ("                            Burst Type       = Interleaved");else$display ("                            Burst Type       = Reserved");// Write Burst Modeif (Addr[9] == 1'b0)$display ("                            Write Burst Mode = Programmed Burst Length");else if (Addr[9] == 1'b1)$display ("                            Write Burst Mode = Single Location Access");else$display ("                            Write Burst Mode = Reserved");endend else begin$display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);end// REF to LMRif ($time - RC_chk < tRC) begin$display ("at time %t ERROR: tRC violation during Load Mode Register", $time);end// LMR to LMRif (MRD_chk < tMRD) begin$display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);endMRD_chk = 0;end// Active Block (Latch Bank Address and Row Address)if (Active_enable == 1'b1) beginif (Ba == 2'b00 && Pc_b0 == 1'b1) begin{Act_b0, Pc_b0} = 2'b10;B0_row_addr = Addr [addr_bits - 1 : 0];RCD_chk0 = $time;RAS_chk0 = $time;if (Debug) $display ("at time %t ACT  : Bank = 0 Row = %d", $time, Addr);// Precharge to Activate Bank 0if ($time - RP_chk0 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 0", $time);endend else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin{Act_b1, Pc_b1} = 2'b10;B1_row_addr = Addr [addr_bits - 1 : 0];RCD_chk1 = $time;RAS_chk1 = $time;if (Debug) $display ("at time %t ACT  : Bank = 1 Row = %d", $time, Addr);// Precharge to Activate Bank 1if ($time - RP_chk1 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 1", $time);endend else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin{Act_b2, Pc_b2} = 2'b10;B2_row_addr = Addr [addr_bits - 1 : 0];RCD_chk2 = $time;RAS_chk2 = $time;if (Debug) $display ("at time %t ACT  : Bank = 2 Row = %d", $time, Addr);// Precharge to Activate Bank 2if ($time - RP_chk2 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 2", $time);endend else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin{Act_b3, Pc_b3} = 2'b10;B3_row_addr = Addr [addr_bits - 1 : 0];RCD_chk3 = $time;RAS_chk3 = $time;if (Debug) $display ("at time %t ACT  : Bank = 3 Row = %d", $time, Addr);// Precharge to Activate Bank 3if ($time - RP_chk3 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 3", $time);endend else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin$display ("at time %t ERROR: Bank 0 is not Precharged.", $time);end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin$display ("at time %t ERROR: Bank 1 is not Precharged.", $time);end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin$display ("at time %t ERROR: Bank 2 is not Precharged.", $time);end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin$display ("at time %t ERROR: Bank 3 is not Precharged.", $time);end// Active Bank A to Active Bank Bif ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin$display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);end// Load Mode Register to Activeif (MRD_chk < tMRD ) begin$display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);end// Auto Refresh to Activateif (($time - RC_chk < tRC)&&Debug) begin$display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);end// Record variables for checking violationRRD_chk = $time;Previous_bank = Ba;end// Precharge Blockif (Prech_enable == 1'b1) beginif (Addr[10] == 1'b1) begin{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;RP_chk0 = $time;RP_chk1 = $time;RP_chk2 = $time;RP_chk3 = $time;if (Debug) $display ("at time %t PRE  : Bank = ALL",$time);// Activate to Precharge all banksif (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin$display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);end// tWR violation check for writeif (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin$display ("at time %t ERROR: tWR violation during Precharge all bank", $time);endend else if (Addr[10] == 1'b0) beginif (Ba == 2'b00) begin{Pc_b0, Act_b0} = 2'b10;RP_chk0 = $time;if (Debug) $display ("at time %t PRE  : Bank = 0",$time);// Activate to Precharge Bank 0if ($time - RAS_chk0 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);endend else if (Ba == 2'b01) begin{Pc_b1, Act_b1} = 2'b10;RP_chk1 = $time;if (Debug) $display ("at time %t PRE  : Bank = 1",$time);// Activate to Precharge Bank 1if ($time - RAS_chk1 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);endend else if (Ba == 2'b10) begin{Pc_b2, Act_b2} = 2'b10;RP_chk2 = $time;if (Debug) $display ("at time %t PRE  : Bank = 2",$time);// Activate to Precharge Bank 2if ($time - RAS_chk2 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);endend else if (Ba == 2'b11) begin{Pc_b3, Act_b3} = 2'b10;RP_chk3 = $time;if (Debug) $display ("at time %t PRE  : Bank = 3",$time);// Activate to Precharge Bank 3if ($time - RAS_chk3 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);endend// tWR violation check for writeif ($time - WR_chk[Ba] < tWRp) begin$display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);endend// Terminate a Write Immediately (if same bank or all banks)if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) beginData_in_enable = 1'b0;end// Precharge Command Pipeline for Readif (Cas_latency_3 == 1'b1) beginCommand[2] = `PRECH;Bank_precharge[2] = Ba;A10_precharge[2] = Addr[10];end else if (Cas_latency_2 == 1'b1) beginCommand[1] = `PRECH;Bank_precharge[1] = Ba;A10_precharge[1] = Addr[10];endend// Burst terminateif (Burst_term == 1'b1) begin// Terminate a Write Immediatelyif (Data_in_enable == 1'b1) beginData_in_enable = 1'b0;end// Terminate a Read Depend on CAS Latencyif (Cas_latency_3 == 1'b1) beginCommand[2] = `BST;end else if (Cas_latency_2 == 1'b1) beginCommand[1] = `BST;endif (Debug) $display ("at time %t BST  : Burst Terminate",$time);end// Read, Write, Column Latchif (Read_enable == 1'b1 || Write_enable == 1'b1) begin// Check to see if bank is open (ACT)if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||(Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin$display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);end// Activate to Read or Writeif ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);// Read Commandif (Read_enable == 1'b1) begin// CAS Latency pipelineif (Cas_latency_3 == 1'b1) beginif (Addr[10] == 1'b1) beginCommand[2] = `READ_A;end else beginCommand[2] = `READ;endCol_addr[2] = Addr;Bank_addr[2] = Ba;end else if (Cas_latency_2 == 1'b1) beginif (Addr[10] == 1'b1) beginCommand[1] = `READ_A;end else beginCommand[1] = `READ;endCol_addr[1] = Addr;Bank_addr[1] = Ba;end// Read interrupt Write (terminate Write immediately)if (Data_in_enable == 1'b1) beginData_in_enable = 1'b0;end// Write Commandend else if (Write_enable == 1'b1) beginif (Addr[10] == 1'b1) beginCommand[0] = `WRITE_A;end else beginCommand[0] = `WRITE;endCol_addr[0] = Addr;Bank_addr[0] = Ba;// Write interrupt Write (terminate Write immediately)if (Data_in_enable == 1'b1) beginData_in_enable = 1'b0;end// Write interrupt Read (terminate Read immediately)if (Data_out_enable == 1'b1) beginData_out_enable = 1'b0;endend// Interrupting a Write with Autoprechargeif (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) beginRW_interrupt_write[Bank] = 1'b1;if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);end// Interrupting a Read with Autoprechargeif (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) beginRW_interrupt_read[Bank] = 1'b1;if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);end// Read or Write with Auto Prechargeif (Addr[10] == 1'b1) beginAuto_precharge[Ba] = 1'b1;Count_precharge[Ba] = 0;if (Read_enable == 1'b1) beginRead_precharge[Ba] = 1'b1;end else if (Write_enable == 1'b1) beginWrite_precharge[Ba] = 1'b1;endendend//  Read with Auto Precharge Calculation//      The device start internal precharge://          1.  CAS Latency - 1 cycles before last burst//      and 2.  Meet minimum tRAS requirement//       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) beginif ((($time - RAS_chk0 >= tRAS) &&                                                      // Case 2((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) ||                             // Case 1(Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||(RW_interrupt_read[0] == 1'b1)) begin                                              // Case 3Pc_b0 = 1'b1;Act_b0 = 1'b0;RP_chk0 = $time;Auto_precharge[0] = 1'b0;Read_precharge[0] = 1'b0;RW_interrupt_read[0] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);endendif ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) beginif ((($time - RAS_chk1 >= tRAS) &&((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||(RW_interrupt_read[1] == 1'b1)) beginPc_b1 = 1'b1;Act_b1 = 1'b0;RP_chk1 = $time;Auto_precharge[1] = 1'b0;Read_precharge[1] = 1'b0;RW_interrupt_read[1] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);endendif ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) beginif ((($time - RAS_chk2 >= tRAS) &&((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||(RW_interrupt_read[2] == 1'b1)) beginPc_b2 = 1'b1;Act_b2 = 1'b0;RP_chk2 = $time;Auto_precharge[2] = 1'b0;Read_precharge[2] = 1'b0;RW_interrupt_read[2] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);endendif ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) beginif ((($time - RAS_chk3 >= tRAS) &&((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||(RW_interrupt_read[3] == 1'b1)) beginPc_b3 = 1'b1;Act_b3 = 1'b0;RP_chk3 = $time;Auto_precharge[3] = 1'b0;Read_precharge[3] = 1'b0;RW_interrupt_read[3] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);endend// Internal Precharge or Bstif (Command[0] == `PRECH) begin                         // Precharge terminate a read with same bank or all banksif (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) beginif (Data_out_enable == 1'b1) beginData_out_enable = 1'b0;endendend else if (Command[0] == `BST) begin                  // BST terminate a read to current bankif (Data_out_enable == 1'b1) beginData_out_enable = 1'b0;endendif (Data_out_enable == 1'b0) beginDq_reg <= #tOH {data_bits{1'bz}};end// Detect Read or Write commandif (Command[0] == `READ || Command[0] == `READ_A) beginBank = Bank_addr[0];Col = Col_addr[0];Col_brst = Col_addr[0];if (Bank_addr[0] == 2'b00) beginRow = B0_row_addr;end else if (Bank_addr[0] == 2'b01) beginRow = B1_row_addr;end else if (Bank_addr[0] == 2'b10) beginRow = B2_row_addr;end else if (Bank_addr[0] == 2'b11) beginRow = B3_row_addr;endBurst_counter = 0;Data_in_enable = 1'b0;Data_out_enable = 1'b1;end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) beginBank = Bank_addr[0];Col = Col_addr[0];Col_brst = Col_addr[0];if (Bank_addr[0] == 2'b00) beginRow = B0_row_addr;end else if (Bank_addr[0] == 2'b01) beginRow = B1_row_addr;end else if (Bank_addr[0] == 2'b10) beginRow = B2_row_addr;end else if (Bank_addr[0] == 2'b11) beginRow = B3_row_addr;endBurst_counter = 0;Data_in_enable = 1'b1;Data_out_enable = 1'b0;end// DQ buffer (Driver/Receiver)if (Data_in_enable == 1'b1) begin                                   // Writing Data to Memory// Array bufferif (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];// Dqm operationif (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];//if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];// if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];// Write to memoryif (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)$display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);//$fdisplay(test_file,"bank:%h	row:%h	col:%h	write:%h",Bank,Row,Col,Dq_dqm);// Output resultif (Dqm == 4'b1111) beginif (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);end else beginif (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);// Record tWR time and reset counterWR_chk [Bank] = $time;WR_counter [Bank] = 0;end// Advance burst counter subroutine#tHZ Burst;end else if (Data_out_enable == 1'b1) begin                         // Reading Data from Memory//$display("%h	,	%h,	%h",Bank0,Row,Col);// Array bufferif (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];// Dqm operationif (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;// Display resultDq_reg [data_bits - 1  : 0] = #tAC Dq_dqm [data_bits - 1  : 0];if (Dqm_reg0 == 4'b1111) beginif (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);end else beginif (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);end// Advance burst counter subroutineBurst;endend//  Write with Auto Precharge Calculation//      The device start internal precharge://          1.  tWR Clock after last burst//      and 2.  Meet minimum tRAS requirement//       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)always @ (WR_counter[0]) beginif ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) beginif ((($time - RAS_chk0 >= tRAS) &&                                                          // Case 2(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) ||   // Case 1(Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||(RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin                           // Case 3 (stop count when interrupt)Auto_precharge[0] = 1'b0;Write_precharge[0] = 1'b0;RW_interrupt_write[0] = 1'b0;#tWRa;                          // Wait for tWRPc_b0 = 1'b1;Act_b0 = 1'b0;RP_chk0 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);endendendalways @ (WR_counter[1]) beginif ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) beginif ((($time - RAS_chk1 >= tRAS) &&(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||(RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) beginAuto_precharge[1] = 1'b0;Write_precharge[1] = 1'b0;RW_interrupt_write[1] = 1'b0;#tWRa;                          // Wait for tWRPc_b1 = 1'b1;Act_b1 = 1'b0;RP_chk1 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);endendendalways @ (WR_counter[2]) beginif ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) beginif ((($time - RAS_chk2 >= tRAS) &&(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||(RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) beginAuto_precharge[2] = 1'b0;Write_precharge[2] = 1'b0;RW_interrupt_write[2] = 1'b0;#tWRa;                          // Wait for tWRPc_b2 = 1'b1;Act_b2 = 1'b0;RP_chk2 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);endendendalways @ (WR_counter[3]) beginif ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) beginif ((($time - RAS_chk3 >= tRAS) &&(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||(RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) beginAuto_precharge[3] = 1'b0;Write_precharge[3] = 1'b0;RW_interrupt_write[3] = 1'b0;#tWRa;                          // Wait for tWRPc_b3 = 1'b1;Act_b3 = 1'b0;RP_chk3 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);endendendtask Burst;begin// Advance Burst CounterBurst_counter = Burst_counter + 1;// Burst Typeif (Mode_reg[3] == 1'b0) begin                                  // Sequential BurstCol_temp = Col + 1;end else if (Mode_reg[3] == 1'b1) begin                         // Interleaved BurstCol_temp[2] =  Burst_counter[2] ^  Col_brst[2];Col_temp[1] =  Burst_counter[1] ^  Col_brst[1];Col_temp[0] =  Burst_counter[0] ^  Col_brst[0];end// Burst Lengthif (Burst_length_2) begin                                       // Burst Length = 2Col [0] = Col_temp [0];end else if (Burst_length_4) begin                              // Burst Length = 4Col [1 : 0] = Col_temp [1 : 0];end else if (Burst_length_8) begin                              // Burst Length = 8Col [2 : 0] = Col_temp [2 : 0];end else begin                                                  // Burst Length = FULLCol = Col_temp;end// Burst Read Single Write            if (Write_burst_mode == 1'b1) beginData_in_enable = 1'b0;end// Data Counterif (Burst_length_1 == 1'b1) beginif (Burst_counter >= 1) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endend else if (Burst_length_2 == 1'b1) beginif (Burst_counter >= 2) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endend else if (Burst_length_4 == 1'b1) beginif (Burst_counter >= 4) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endend else if (Burst_length_8 == 1'b1) beginif (Burst_counter >= 8) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endendendendtask//**********************将SDRAM内的数据直接输出到外部文件*******************************///*    integer	sdram_data,ind;always@(sdram_r)beginsdram_data=$fopen("sdram_data.txt");$display("Sdram dampout begin ",sdram_data);
//		   $fdisplay(sdram_data,"Bank0:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank0[ind]);
//		   $fdisplay(sdram_data,"Bank1:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank1[ind]);
//		   $fdisplay(sdram_data,"Bank2:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank2[ind]);
//	           $fdisplay(sdram_data,"Bank3:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank3[ind]);$fclose("sdram_data.txt");        //->compare;end        
*/integer	sdram_data,sdram_mem;reg	[23:0]	aa,cc;reg	[18:0]	bb,ee;always@(sdram_r)begin$display("Sdram dampout begin ",$realtime);sdram_data=$fopen("sdram_data.txt");for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)beginbb=aa[18:0];if(aa<=mem_sizes)$fdisplay(sdram_data,"%0d	%0h",aa,Bank0[bb]);else if(aa<=2*mem_sizes+1)$fdisplay(sdram_data,"%0d	%0h",aa,Bank1[bb]);else if(aa<=3*mem_sizes+2)$fdisplay(sdram_data,"%0d	%0h",aa,Bank2[bb]);else$fdisplay(sdram_data,"%0d	%0h",aa,Bank3[bb]);end	    	    	    $fclose("sdram_data.txt"); sdram_mem=$fopen("sdram_mem.txt");for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)beginee=cc[18:0];if(cc<=mem_sizes)$fdisplay(sdram_mem,"%0h",Bank0[ee]);else if(cc<=2*mem_sizes+1)$fdisplay(sdram_mem,"%0h",Bank1[ee]);else if(cc<=3*mem_sizes+2)$fdisplay(sdram_mem,"%0h",Bank2[ee]);else$fdisplay(sdram_mem,"%0h",Bank3[ee]);end	    	    	    $fclose("sdram_mem.txt");        end        //    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    specify
//        specparam
                    tAH  =  0.8,                                        // Addr, Ba Hold Time
                    tAS  =  1.5,                                        // Addr, Ba Setup Time
                    tCH  =  2.5,                                        // Clock High-Level Width
                    tCL  =  2.5,                                        // Clock Low-Level Width
//                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
//                    tCK  = 7.5,    					// Clock Cycle Time  133mhz
                    tCK  =  7,                				// Clock Cycle Time  143mhz
                    tDH  =  0.8,                                        // Data-in Hold Time
                    tDS  =  1.5,                                        // Data-in Setup Time
                    tCKH =  0.8,                                        // CKE Hold  Time
                    tCKS =  1.5,                                        // CKE Setup Time
                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//                    tAH  =  1,                                        // Addr, Ba Hold Time
//                    tAS  =  1.5,                                        // Addr, Ba Setup Time
//                    tCH  =  1,                                        // Clock High-Level Width
//                    tCL  =  3,                                        // Clock Low-Level Width
                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
                    tCK  = 7.5,    					// Clock Cycle Time  133mhz
//                    tCK  =  7,                				// Clock Cycle Time  143mhz
//                    tDH  =  1,                                        // Data-in Hold Time
//                    tDS  =  2,                                        // Data-in Setup Time
//                    tCKH =  1,                                        // CKE Hold  Time
//                    tCKS =  2,                                        // CKE Setup Time
//                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
//                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//        $width    (posedge Clk,           tCH);
//        $width    (negedge Clk,           tCL);
//        $period   (negedge Clk,           tCK);
//        $period   (posedge Clk,           tCK);
//        $setuphold(posedge Clk,    Cke,   tCKS, tCKH);
//        $setuphold(posedge Clk,    Cs_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Cas_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    Ras_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    We_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Addr,  tAS,  tAH);
//        $setuphold(posedge Clk,    Ba,    tAS,  tAH);
//        $setuphold(posedge Clk,    Dqm,   tCMS, tCMH);
//        $setuphold(posedge Dq_chk, Dq,    tDS,  tDH);
//    endspecifyendmodule

仿真测试结果

这里给出modelsim的仿真结果如下:
在这里插入图片描述
出现上述结果,说明SDRAM的上电初始化成功,上面也打印出来了配置具体的模式。
接下来我们会写出SDRAM的刷新模块、读写模块。

参考文献

[1] 开源骚客

总结

创作不易,认为文章有帮助的同学们可以关注点赞支持。(工程也都在群中)对文章有什么看法或者需要更近一步交流的同学,可以加入下面的群:
在这里插入图片描述


http://chatgpt.dhexx.cn/article/ZOBFMPCM.shtml

相关文章

FPGA进阶(3):SDRAM读写控制器的设计与验证

文章目录 第50讲&#xff1a;SDRAM读写控制器的设计与验证理论部分设计与实现1. sdram_ctrlsdram_initsdram_a_refsdram_writesdram_readsdram_arbitsdram_ctrl 2. sdram_topfifo_ctrlsdram_top 3. uart_sdramuart_rxuart_txfifo_readuart_sdram 第50讲&#xff1a;SDRAM读写控…

SDRAM

简介、优缺点、历史 1、译为“同步动态随机存取内存”&#xff0c;区别于异步DRAM。SRAM是异步静态存储器。 2、同步(Synchronous)&#xff1a;与通常的异步 DRAM 不同&#xff0c; SDRAM 存在一个同步接口&#xff0c;其工作时钟的时钟频率与对应控制器(CPU/FPGA上的读写控制…

关于SDRAM存储器

一、对SDRAM的初步认识 1.1 什么是SDRAM SDRAM&#xff08;Synchronous Dynamic Random Access Memory&#xff09;&#xff0c;同步动态随机存取存储器。 同步&#xff1a;工作频率与对应控制器的系统时钟频率相同&#xff0c;且内存内部的命令以及数据的传输都以此为基准 …

内存控制器与SDRAM

内存接口概念&#xff1a; 通常ARM芯片内置的内存很少&#xff0c;要运行Linux&#xff0c;需要扩展内存。ARM9扩展内存使用SDRAM内存&#xff0c;ARM11使用 DDR SDRAM。S3C2440通常外接32位64MBytes的SDRAM&#xff0c;采用两片16位32M的SDRAM芯片&#xff0c;SDRAM芯片通过地…

SDRAM驱动篇之简易SDRAM控制器的verilog代码实现

在Kevin写的上一篇博文《SDRAM理论篇之基础知识及操作时序》中&#xff0c;已经把SDRAM工作的基本原理和SDRAM初始化、读、写及自动刷新操作的时序讲清楚了&#xff0c;在这一片博文中&#xff0c;Kevin来根据在上一篇博文中分析的思路来把写一个简单的SDRAM控制器。 我们在上一…

FPGA之SDRAM控制器设计(一)

MT48LC128M4A2 – 32 Meg x 4 x 4 banks是512M SRAM&#xff0c;总体概述如下图 分别从上电初始化&#xff0c;刷新&#xff0c;写&#xff0c;读四个部分进行设计&#xff0c;此外还包含主控状态机&#xff0c;一个顶层。 1&#xff1a;上电初始化 整体架构&#xff1a;从控…

内存控制器与SDRAM【赞】

原文链接&#xff1a;https://blog.csdn.net/qq_31216691/article/details/87115697 内存接口概念&#xff1a; 通常ARM芯片内置的内存很少&#xff0c;要运行Linux&#xff0c;需要扩展内存。ARM9扩展内存使用SDRAM内存&#xff0c;ARM11使用 DDR SDRAM。S3C2440通常外接32位6…

SDRAM 介绍

目录 1、名词解释 2、SDRAM 内部结构 3、SDRAM 外部信号描述 4、SDRAM 命令 4.1、COMMAND INHIBIT 4.2、NO OERATION 4.3、ACTIVE 4.4、LOAD MODE REGISTER (LMR) 4.5、READ 4.6、WRITE 4.7、PRECHARGE 4.8、BURST TERMINATE 4.9、REFRESH 4.9.1、AUTO REFRESH …

SDRAM控制器操作时序

此为学习http://dengkanwen.com/137.html整理的笔记&#xff0c;侵删&#xff01; SDRAM工作原理 内部的状态跳转图 我们所需关注的几个地方&#xff1a; 1&#xff09;粗黑线表示在该状态下会自动跳转到另一个状态&#xff0c;细黑线表示需要给命令才会跳转。 2&#xff09…

SDR SDRAM控制器设计

目录 前言 1、关于刷新 2、关于数据中心对齐 3、SDRAM芯片手册介绍 3.1SDRAM芯片的管脚 3.2 SDRAM指令集 3.3 模式寄存器 3.4 关于SDRAM上电初始化和装载模式寄存器 3.5 SDRAM刷新时序 3.6 关于写访问 3.7 关于突发访问 4、FPGA工程设计 4.1状态机设计 5、仿真测试…

【GD32】从零开始学GD32单片机高级篇——外部存储器控制器EXMC详解+SDRAM读写例程

目录 简介外部设备地址映射NOR和PSRAM的地址映射NAND/PC Card地址映射SDRAM地址映射 NOR/PSRAM控制器接口描述控制时序模式1模式2 NAND Flash或PC Card控制器接口描述控制时序 SDRAM控制器接口描述控制时序突发读操作突发写操作读写FIFO跨边界读写操作低功耗模式自刷新模式掉电…

初识内存控制器和SDRAM【一文了解】

原文链接&#xff1a;https://blog.csdn.net/qq_36243942/article/details/85596249 目录 1.引入内存控制器 2.不同位宽内存设备之间的连接 3.如何确定芯片的访问地址 4.分析读写NOR FLASH的读写时序 5.SDRAM初识 6.编程读/写 SDRAM 附录&#xff1a;源代码 1.引入内存控制器 我…

存储控制器(SDRAM操作)

什么是存储控制器 2440是32位单片机&#xff0c;进行数据访问时通过32位地址访问。 CPU发出32位地址信号给存储控制器&#xff0c;存储控制器根据地址信号设置片选信号及地址总线&#xff0c;将相应数据通过数据总线传回存储控制器&#xff0c;存储控制器将收到的数据以字节为…

数字IC实践项目(2)——高速SDRAM控制器的设计与综合(入门级工程项目)

数字IC实践项目&#xff08;2&#xff09;—高速SDRAM控制器的设计与综合&#xff08;入门级工程项目&#xff09; 写在前面的话项目简介和学习目的SDRAM简介SDRAM控制器简介完整项目框图SDRAM控制器项目框图SDRAM初始化模块SDRAM自动刷新模块SDRAM写模块SDRAM读模块SDRAM仲裁机…

SDRAM控制器——仲裁模块的实现

前面一文中&#xff0c;我们已经对SDRAM的上电初始化、自动刷新以及突发读写进行了学习。 本文跟着大佬学习SDRAM中的仲裁模块。 仲裁机制 仲裁&#xff08;arbit&#xff09;&#xff1a;在FPGA中&#xff0c;当多个source源同时发出请求&#xff0c;容易导致操作冲突&#x…

SDRAM读写控制器

第1节 –作者&#xff1a;小黑同学 本文为明德扬原创及录用文章&#xff0c;转载请注明出处&#xff01; 1.1 总体设计 1.1.1 概述 同步动态随机存取内存&#xff08;synchronous dynamic randon-access menory&#xff0c;简称SDRAM&#xff09;是有一个同步接口的动态随…

FPGA综合项目——SDRAM控制器

FPGA综合项目——SDRAM控制器 目录 1.整体框架2.串口接收模块3.接收模块测试仿真4.串口发送模块5.发送模块测试仿真6.SDRAM基础学习7.SDRAM顶层模块8.SDRAM初始化模块设计与仿真测试9.自动刷新模块设计与测试10.写模块设计与测试11.读模块设计与仿真测试12.通信处理模块13.顶层…

细说SDRAM控制器

SDRAM的基本概念 SDRAM凭借其极高的性价比&#xff0c;广泛应用于高速数据存储、实时图像处理等设计当中&#xff0c;但是相对于SRAM、FIFO等其他存储器件&#xff0c;SDRAM的控制相对复杂。虽说是复杂&#xff0c;但也不代表没办法实现&#xff0c;仔细梳理一下&#xff0c;发…

SDRAM控制器

1.SDRAM简介 简介&#xff1a;SDRAM为同步动态随机存储内存&#xff0c;同步指的是时钟与外部输入的时钟保持一致&#xff0c;也就是与外部共用一个时钟&#xff1b;动态指的是每个时间段内&#xff0c;都要进行一次刷新操作&#xff0c;否则里面的数据会丢失&#xff0c;这也…

FPGA学习历程(四):SDRAM 控制器(初始化与刷新)

目录 一、数据手册相关信息1.1 命令真值表1.2 时间参数1.3 模式寄存器配置 二、初始化模块2.1 模块时序图2.2 模块源码2.2.1 sdram_init.v2.2.2 sdram_top.v2.2.3 tb_sdram_top.v 2.3 Modelsim仿真 三、刷新模块3.1 模块时序图3.2 模块源码3.2.1 sdram_aref.v3.2.2 sdram_top.v…