AI实战:2019、2020最新的中文文本检测检测模型

article/2025/9/10 8:21:40

2019、2020最新的中文文本检测检测模型

1、DBNet(Real-time Scene Text Detection with Differentiable Binarization)

  • 论文地址:https://arxiv.org/pdf/1911.08947.pdf

  • 作者:华中科技大学 Minghui Liao 1∗ , Zhaoyi Wan 2∗ , Cong Yao 2 , Kai Chen 3,4 , Xiang Bai 1

  • 网络结构
    在这里插入图片描述

  • 创新点
    在基于分割的文本检测网络中,最终的二值化map都是使用的固定阈值来获取,并且阈值不同对性能影响较大。本文中,对每一个像素点进行自适应二值化,二值化阈值由网络学习得到,彻底将二值化这一步骤加入到网络里一起训练,这样最终的输出图对于阈值就会非常鲁棒。

  • 开源代码:
    github:https://github.com/MhLiao/DB

  • 检测结果示例
    在这里插入图片描述

  • 测试结果

在这里插入图片描述

2、CRAFT(Character Region Awareness for Text Detection)

  • 论文地址:https://arxiv.org/pdf/1904.01941.pdf

  • 作者:Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee ∗
    Clova AI Research, NAVER Corp.

  • 网络结构
    在这里插入图片描述

  • 创新点
    利用了分割的方法,将一个字符视为一个检测目标对象,而不是一个文本框当做目标。先检测单个字符(character region score)及字符间的连接关系(affinity score),然后根据字符间的连接关系确定最终的文本行。这样做的好处在于:使用小感受野也能预测大文本和长文本,只需要关注字符级别的内容而不需要关注整个文本实例。

  • 开源代码:
    github:https://github.com/clovaai/CRAFT-pytorch

  • 检测结果示例
    在这里插入图片描述

  • 测试结果

在这里插入图片描述

3、PSENet(Shape Robust Text Detection with Progressive Scale Expansion Network)

  • 论文地址:https://arxiv.org/abs/1806.02559

  • 作者:Xiang Li, Wenhai Wang, Wenbo Hou, Ruo-Ze Liu, Tong Lu, Jian Yang

  • 网络结构
    在这里插入图片描述

  • 创新点
    1、提出了一种基于基于像素级别的分割的方法psenet,能够对任意形状的文本进行定位。
    2、提出了一种渐进的尺度扩展算法,该算法可以成功地识别相邻文本实例。

  • 开源代码:
    github:https://github.com/whai362/PSENet

  • 其他参考:AI实战:最强文本检测模型Shape Robust Text Detection with Progressive Scale Expansion Network (PSENet)


http://chatgpt.dhexx.cn/article/XrsTlMZW.shtml

相关文章

人工智能学习--文本检测初探

一、相关概念和综述: 转自知乎热心网友 燕小花女士的内容,供学习使用,若侵权则删。貌似写于2018年12月,之后这几年的流行方法更新,自行搜索sci顶刊和会议论文。 https://zhuanlan.zhihu.com/p/52335619 文本检测的难…

文本检测综述(2017 ~ 2021)

文本检测综述 文本检测传统方法文本检测深度方法目标检测文本检测1.【ECCV2016】CTPN(Detecting Text in Natural Image with Connectionist Text Proposal Network)2. 【CVPR2017】SegLink(Detecting Oriented Text in Natural Images by li…

文本检测算法----TextFuseNet(IJCAI-PRICAI-20)

多种文本检测算法性能对比及算法介绍 (https://blog.csdn.net/qq_39707285/article/details/108754444) TextFuseNet: Scene Text Detection with Richer Fused Features 前言1. 算法简介2. 算法详解2.1 网络结构2.2 Multi-level Feature Representation2.3 Multi-path Fusion …

Exploring the Capacity of Sequential-free Box Discretization Network for Omnidirectional Scene Text

Paper : https://arxiv.org/abs/1912.09629v1 Code : https://tinyurl.com/sbdnet SBD首先将四边形边框离散为几个关键边缘,其中包含所有可能的水平和垂直位置。为了解码准确的顶点位置,提出了一种简单而有效的匹配程序来重构四边形边界框。 基本思想是…

文本检测模型综述

之前做车牌检测使用文本检测模型,如east、ctpn和textboxes,但是效果不是很好,需要针对车牌专门训练。后面就采用ssd和yolo进行车牌的检测,但是车牌有时是旋转的,使用ssd和yolo模型无法对车牌的四个点进行精确定位&…

OCR系列——文本检测任务

1. 简介 文本检测任务是找出图像或视频中的文字位置。不同于目标检测任务,目标检测不仅要解决定位问题,还要解决目标分类问题。 目标检测和文本检测同属于“定位”问题。但是文本检测无需对目标分类,并且文本形状复杂多样。 当前所说的文本…

文本检测(Text Detection)简要综述

文章目录 检测(Detection)在计算机视觉中的位置检测任务经典数据集评价指标发展历史什么叫Anchor检测架构RPNFPN(特征金字塔网络) 几个文本检测的较新方法FOTS(【2018CVPR】Fast Oriented Text Spotting with a Unified Network)TextSnake(【2018ECCV】 TextSnake: A Flexible …

思维导图——线性代数知识点总结

线性代数知识点总结 期末,总结了线性代数的相关知识点。

线性代数知识点总结,基础概念和计算整理(手写版)

线性代数中一定必须要掌握的基础概念和计算的整理,简单易懂,适合入门和复习。

线性代数基础知识点回顾与总结(一):行列式与矩阵

线性代数基础知识点回顾与总结(一):行列式与矩阵 介绍 骨骼图 1.行列式 排列: 1,2,,n组成的有序数组称为n阶排列。 逆序:大数排在小数前。自然排列为偶排列。 n阶行列式的值等于不同行的n…

线性代数-行列式知识总结

1、知识脉络如图 2、二阶与三阶行列式 (1)定义略 (2)二阶行列式与三阶行列式的计算“对角线法则”,三阶可降为二阶(方便计算) 如图 注意符号 (3)行列式线性方程组的关系 …

深度学习涉及到的线性代数知识点总结(二)

文章目录 一、余弦相似度和欧式距离的关系二、相关性三、基四、线性变换五、仿射变换六、矩阵特征方程七、相似矩阵八、奇异值分解九、谱范数 一、余弦相似度和欧式距离的关系 如果对向量模长进行归一化,欧式距离和余弦相似度有如下计算关系: ● 适用场…

线性代数矩阵知识点

文章目录 (一),矩阵的基本概念1,矩阵的定义 (二),矩阵的运算1,矩阵的加减法2,数与矩阵的乘法3,矩阵的乘法4,矩阵的转置5,方阵的行列式…

线性代数知识图谱

1. 线性代数知识图谱 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而…

基础线性代数知识点总结与回顾(二):秩与线性相关

基础线性代数知识点总结与回顾(二):秩与线性相关 骨骼图 秩 矩阵的秩: 若矩阵的r阶子式不为0,r1阶子式全为0,则称矩阵的秩为r。 定理:经过初等变换,矩阵的秩不变。 推论 秩的…

大一线性代数知识点总结

行列式和矩阵的加法和乘法的比较 伴随矩阵的一些性质 以下是全部知识点总结 线性方程组的系数行列式为零时,不能用克拉默法则解方程组,因为此时方程组的解为无解或有无穷多个解。 克拉默法则解线性方程组的两个条件: 方程个数等于未知量个数…

线性代数知识总结梳理

目录 1.行列式计算 2.矩阵 3.向量与方程组 4.特征值 5.二次型 1.行列式计算 2.矩阵 3.向量与方程组 4.特征值 5.二次型

基础线性代数知识点总结与回顾(三):向量空间和二次型

基础线性代数知识点总结与回顾(三):向量空间和二次型 骨骼图: 向量空间 对加法、数乘封闭。 W——n维向量的非空集合,且满足: 则:W为n维向量空间的子空间。 如果向量空间V中的向量(a1,a2,a…