大数据和人工智能属于什么专业 - 学大数据和人工智能出来做什么

article/2025/7/17 3:24:41

人工智能专业主要从事什么工作?

1、算法工程师。进行人工智能相关前沿算法的研究,包括机器学习、知识应用、智能决策等技术的应用。以机器学习的过程为例,涉及到数据收集、数据整理、算法设计、算法训练、算法验证、算法应用等步骤,所以算法是机器学习开发的重点。

2、程序开发工程师。一方面程序开发工程师需要完成算法实现,另一方面程序开发工程师需要完成项目的落地,需要完成各个功能模块的整合。

3、人工智能运维工程师。大数据与AI产品相关运营、运维产品研发;相关组件的运维工具系统的开发与建设;提供大数据与AI云产品客户支持。

4、智能机器人研发工程师。研发方向主要从事机器人控制系统开发,高精度器件的设计研发等。工业机器人系统集成方向主要做工作站设计,电气设计,器件选型,机器人调试,编程,维护等。

5、AI硬件专家。AI 领域内另外一种日益增长的蓝领工作是负责创建 AI 硬件(如 GPU 芯片)的工业操作工作。大科技公司目前已经采取了措施,来建立自己的专业芯片。

大数据专业主要学什么?

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

主要课程包含以下:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

关于大数据专业可以到CDA认证机构了解一下,CDA(Certified Data Analyst),是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。

常见的神经网络结构

大数据专业学了主要做什么?

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。以中国人民大学为例:基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

人工智能是什么专业?

人工智能专业是中国高校人才计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。

人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

课程体系

学习内容:机器学习、生物演化论、图像识别、自然语言处理、语义网、博弈论和人工智能导论(搜索法等)。

前置课程:线性代数、微积分、信号处理、编程(最好有数据结构基础)等。

核心课程:高等数学、离散数学、人工智能导论、模式识别、智能机器人、机器学习、人机交互技术、计算机视觉、自然语言处理、控制原理、算法设计与分析、数据分析与大数据挖掘、群体智能、知识工程、自主智能系统。

大数据专业学什么,学完可以从事哪些职业

1. 数据分析师。

数据分析师 是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。

作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。

2. 数据架构师。

数据架构师是负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作 ,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。

从事数据架构师这个职位,需要具备较强的业务理解和业务抽象能力,具备大容量事物及交易类互联网平台的数据库模型设计能力,对调度系统,元数据系统有非常深刻的认识和理解,熟悉常用的分析、统计、建模方法,熟悉数据仓库相关技术,如 ETL、报表开发,熟悉Hadoop,Hive等系统并有过实战经验。

3. 数据挖掘工程师。

一般是指从大量的数据中通过算法搜索隐藏于其中知识的工程技术专业人员。这些知识可用使企业决策智能化,自动化,从而使企业提高工作效率,减少错误决策的可能性,以在激烈的竞争中处于不败之地。

成为数据挖据工程师需要具备深厚的统计学、数学、数据挖掘理论基础和相关项目经验,熟悉R、SAS、SPSS等统计分析软件之一,参与过完整的数据采集.整理.分析和建模工作。.具有海量数据下机器学习和算法实施相关经验,熟悉hadoop,hive,map-reduce等。

4. 数据算法工程师。

在企业中负责大数据产品数据挖掘算法与模型部分的设计,将业务场景与模型算法进行融合等;深入研究数据挖掘模型,参与数据挖掘模型的构建、维护、部署和评估,支持产品研发团队模型算法构建,整合等;制定数据建模、数据处理和数据安全等架构规范并落地实施。

需要具备的知识有:扎实的数据挖掘基础知识,精通机器学习、数学统计常用算法;熟悉大数据生态,掌握常见分布式计算框架和技术原理,如Hadoop、MapReduce、Yarn、Storm、Spark等;熟悉Linux操作系统和Shell编程,至少熟悉Scala/Java/Python/C++/R等语言中的一种编程;熟悉大规模并行计算的基本原理并具有实现并行计算算法的基本能力。

5. 数据产品经理。

数据平台建设及维护,客户端数据的分析,进行数据统计协助,数据化运营整理、提炼已有的数据报告,发现数据变化,进行深度专题分析,形成结论,撰写报告;负责公司数据产品的设计及开发实施,并保证业务目标的实现;进行数据产品开发。

需要具备的技能有:有数据分析/数据挖掘/用户行为研究的项目实践经验 ;有扎实的分析理论基础,精通1种以上统计分析工具软件,如SPSS、SAS,熟练使用Excel、SQL等工具; 熟悉SQL/HQL语句,工作经历有SQL server/My SQl等的优先 ;熟练操作excel,ppt等办公软件,熟练使用SPSS、SAS等统计分析软件其中之一 ;熟悉hadoop集群架构、有BI实践经验、参与过流式计算相关经验者加分 ;熟悉客户端产品的产品设计、开发流程 。

什么是人工智能专业?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习

机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。

根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱

知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

机器翻译

机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

语义理解

语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。

问答系统

问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:

一是在词法、句法、语义、语用和语音等不同层面存在不确定性;。

二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;。

三是数据资源的不充分使其难以覆盖复杂的语言现象;。

四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算。

四、人机交互

人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉

计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:

一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;。

二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;。

三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别

生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR

虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。

人工智能专业是干什么的?

最近一段时期,人工智能专业再次冲上热搜,179所院校设立了人工智能专业,作为一个热词,人工智能的热度无疑会吸引来大量的关注,而网络上对于人工智能的薪资宣传,无疑也会吸引大量的考生。

但是,这179所高校同时设立,未免让人心头稍微一紧,大家都知道,同一个专业名,即使是相当成熟的经典专业,在不同的学校开,自然培养方式不一样,出来也不一样。更不说这种新专业。面对这种新事物,自然而然就有疑问:

人工智能是学什么的?不同学校间培养有什么差别?出来就业如何?。

1、<a href="mailto:http:/wenda.hqwx.com/c-121.html" title="人工智能专业" target="_blank">人工智能专业的代码。

经过查阅教育部2020年的本科专业目录:

人工智能专业属于电子信息类,属于同一类的还有电子信息工程和通信工程,这与一般印象中人工智能属于计算机类较为不同。这种分类表明人工智能专业的官方定义中不仅仅局限于计算机领域,更加强调一些电子信息处理的相关方面,更加侧重于理学。

2、人工智能专业培养方案

计算机领域有句名言,Talk is cheap. Show me the code,通俗讲就是别扯没用的,给我看看你的代码,这里也是一样。

经过搜索和分类,本文决定以原985、211的标准分别展示培养方案。

A 同济大学

同济大学本科生院jwc.tongji.edu.cn。

大学经典课程比如英语,政治,物理,体育这些就不多说了。

数学课:高等数学、线性代数、概率论与数理统计,复变函数与积分变换、离散数学、最优化、随机过程。

系统与控制课:信号与系统、反馈控制。

计算机课:高级语言程序设计、Python程序设计实践、数据结构、算法、嵌入式系统、人工智能基础。

电子课:电路、模电、数电

以及一些选修课

看了看这个课程体系,尤其是与同济大学自动化专业对比后。

同济大学本科生院jwc.tongji.edu.cn。

同济大学人工智能专业,删减了自动化经典培养体系里的机械、电机部分,增加了计算机语言的课程,选修课里也去掉了电力系统部分,增加了一些前沿选修课。方向更加细化。

由于专业基础为自动控制类,对于计算机课程引入不多,综合来看,培养方向主要还是与硬件有关但主要从事算法开发的人工智能产业岗位,和同济陈院士从事的智能无人系统相契合。

B、武汉理工大学

与同济大学不同,武汉理工大学的人工智能培养体系更加接近于计算机专业。

武汉理工大学本科招生网zs.whut.edu.cn。

专业核心课程:包括数学类核心课程、计算机类核心课程和人工智能核心课程,数学分析,概率与统计,随机过程,离散数学,数据结构,操作系统与编译原理,数据管理与组织,算法分析与设计,最优化理论与方法,人工智能导论,机器学习与模式识别,多智能体系统,知识工程,认知科学。

专业特色课程:智能规划,数据挖掘,博弈论,数字图像处理,多媒体技术,自然语言处理,大数据可视分析,类脑计算,三维视觉,智能汽车互联技术,智能语音处理,深度学习,人工智能伦理与法治,虚拟现实,智能船舶,智能交通系统,生物信息学。

而计算机专业培养方案

武汉理工大学本科招生网zs.whut.edu.cn。

专业核心课程:高级语言程序设计、离散结构、计算机组成原理、数据结构、操作系统、编译原理、数据库系统原理、计算机网络、软件工程。

专业特色课程:面向对象程序设计、计算机基础与编程综合实验、面向对象与多线程综合实验、算法分析与设计、数据结构与算法综合实验、人工智能。

与计算机专业对比后发现,人工智能专业是在计算机专业基础上,适当去掉了一些传统计算机课程,引入了一些前沿课程。与计算机专业差别不大。

通过以上两个个院校的对比,目前开设<a href="mailto:http:/wenda.hqwx.com/c-121.html" title="人工智能专业" target="_blank">人工智能专业的院校对当前需求均有认识,按照当前的形势来说,是贴合技能需求的。

开设人工智能专业的院校对当前需求均有认识,按照当前的形势来说,是贴合技能需求的。如今,国家对人工智能的重视已经上升到国家战略的层面,人工智能在未来可预见的范围内一定是个热门专业,既有前途又有“钱途”。

大数据属于什么专业?大数

大数据专业属于交叉学科,以统计学、数学、计算机为三大支撑性学科,生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才。各院校开设的课程不完全相同,具体以院校设置为准。

以中国人民大学为例:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

大数据专业就业前景

从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。从近两年的秋招情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。

学大数据可以从事什么工作

1、数据规划师

在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。

2、数据工程师

大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。

3、数据架构师

擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。

4、数据分析师

职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。

5、数据应用师

将数据还原到产品中,为产品所用。他们能够用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。

6、数据科学家

大数据中的领导者,具备多种交叉科学和商业技能,能够将数据和技术转化为企业的商业价值。

参考资料:中国共产党新闻网-大数据时代我们最需要什么样的人才?

 


http://chatgpt.dhexx.cn/article/X7C6Ynmn.shtml

相关文章

方差分析 anova一般指方差分析

方差分析(Analysis of Variance,简称ANOVA),又称“ 变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上 样本均数差别的 显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对…

继续无题

企业分为&#xff1a;决策层、管理层、执行层。 所以企业也会有&#xff1a;决策软件、管理软件、执行软件。 &#xff08;1&#xff09; 啥叫分析&#xff1f;分析就是根据现状&#xff0c;思考原因&#xff0c;这就是典型的归因&#xff1a;从现在往过去捋&#xff0c;这就叫…

数学建模经验分享及比赛时间汇总

一、浅谈数学建模1.1 什么是数学建模 先来看看官方的解释&#xff1a;数学建模是运用数学的语言和方法&#xff0c;通过抽象&#xff0c;简化建立能近似刻画“解决”实际问题的一种强有力的数学手段。数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然…

数模论文写作入门——正文篇

提示&#xff1a;数模论文写作入门还有“首页篇”和“排版篇”&#xff0c;可查看专栏补充。 目录 前言 一、问题重述 1、改词降重 水论文方法 2、 查阅相关背景资料 引用高大上 二、问题分析 三、模型假设 1.题目中明确给出假设条件 2.排除生活中小概率时间&#xff08…

SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类...

https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?wordspss&ieutf-8&lm0&od0 SPSS 18.0由17个功能模组组成&#xff1a; Base System 基础程式 Advanced Models 高等统计模组(GEE/GLM/存活分析) Regression Models 进阶回归模组 …

数学建模论文写作

声明&#xff1a;本文为本人在b站学习清风数学建模的学习笔记 数学建模清风——论文写作方法教程&#xff08;国赛和美赛&#xff09; 文章目录 论文写作方法国赛摘要摘要的开头段摘要的中间段摘要的结尾段摘要中常见的废话完整摘要参考关键词 &#xff08;正文部分&#xff09…

机器学习中的 Shapley 值怎么理解?

导语&#xff1a;在集体合作中&#xff0c;如何公平分配奖励&#xff1f; 图片来源&#xff1a;https://unsplash.com/photos/TL5Vy1IM-uA 我第一次听说 Shapley 值是在学习模型可解释性的时候。我知道了 SHAP&#xff0c;它是一个框架&#xff0c;可以更好地理解为什么机器学…

做数据分析如何从囚徒困境到合作的进化

小飞象交流会 即使拿到一手烂牌&#xff0c;也要打出一串王炸。这是场无限游戏&#xff0c;努力成为牌桌上最后一名玩家。 内部交流│7期 做数据分析如何 从囚徒困境到合作的进化 data analysis ●●●● 分享人&#xff1a;周海鹏 ‍ ‍‍ 在推进业务线各种项目的过程中&#…

博弈论学习(二)——完全信息静态博弈

这一篇主要介绍非合作博弈中&#xff0c;完全信息静态博弈的相关知识。 切记非合作博弈的条件&#xff1a;参与人具有足够智力且极端个人主义&#xff0c;即以自己的效用作为唯一的衡量标准。 要理解完全信息静态博弈&#xff0c;首先要了解以下2个概念&#xff1a; 完全信息…

Nabla算子

Nabla算子的定义&#xff1a; 梯度&#xff1a; 散度&#xff1a; 旋度&#xff1a;

Marr-Hildreth边缘检测器

用于边缘检测的算子应该有两个显著的特点&#xff1a; 1.它应该能够计算图中每一个点处的一阶导数或者二阶导数的数字近似的微分算子。 2.它能够被“调整”以便在任何期望的尺寸上其作用。因此&#xff0c;大的算子也可以用于检测模糊边缘&#xff0c;小的算子可以用来检测锐度…

5-3-BP神经网络

文章目录 引入名词BP神经网络NaN独热码Nabla算子 1神经网络1.1 神经元模型1.2 神经元激活函数1.2.1 为什么要使用激活函数&#xff1f;1.2.2为什么激活函数需要非线性函数&#xff1f;1.2.3常用的激活函数sigmoid 激活函数tanh激活函数Relu激活函数 1.3 神经网络结构 2.损失函数…

图像梯度——Sobel算子和Laplacian算子

一、Sobel算子 1、定义 Sobel算子是一种离散的微分算子&#xff0c;结合了高斯平滑和微分求导运算&#xff0c;利用局部拆分寻找边缘&#xff0c;计算所得的是一个梯度的近似值。 Sobel算子|左-右|/|下-上| Scharr算子|左-右|/|下-上| 2、原理 滤波器指由一幅图根据像素点&…

sobel算子 拉普拉斯算子以及散度与梯度的概念

在ECBSR论文的代码研究中&#xff0c;我发现关于ECBSR提出的多分支重参数化模型中&#xff0c;代码用到了sobel算子与laplace算子&#xff0c;很难判断这两个算子是为了论文的创新点还是真的有用&#xff0c;这块只能等待后续的对比实验。 1、拉普拉斯算子 首先是散度与梯度的…

Python OpenCV Sobel 算子、Scharr 算子、laplacian 算子 复盘学习

Python OpenCV 365 天学习计划&#xff0c;与橡皮擦一起进入图像领域吧。本篇博客是这个系列的第 46 篇。 该系列文章导航参考&#xff1a;https://blog.csdn.net/hihell/category_10688961.html Python OpenCV 基础知识铺垫Sobel 算子Scharr 算子laplacian 算子 橡皮擦的小节 …

矢量场分析

矢量分析 向量微分算子 ∇ [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] T \nabla\left[\frac{\partial}{\partial {x}} \frac{\partial}{\partial {y}} \frac{\partial}{\partial{z}}\right]^T ∇[∂x∂​∂y∂​∂z∂​]T算子是一个形式向量&#xff0c;它可以作用于标量 f f f与向量 F ⃗…

Laplace算子

背景简述 在图像处理&#xff0c;我们知道经常把Laplace算子作为边缘检测之一&#xff0c;也是工程数学中常用的一种积分变换。本节主要介绍Laplacian 算子相关的知识。 基本理论 首先&#xff0c;拉普拉斯算子是最简单的各向同性微分算子&#xff0c;它具有旋转不变性。一个二…

使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现

1. 拉普拉斯算子 1.1 简介 一种典型的各向同性的微分算子&#xff0c;可用于检测图像中灰度图片的区域 $$ \nabla^{2} f\frac{\partial^{2} f}{\partial x^{2}}\frac{\partial^{2} f}{\partial y^{2}} $$ 根据上述的差分近似可以推导出 $$ \nabla^{2} f(x, y)f(x1, y)f(x-1, y)…

卷积神经网络 作业

文章目录 卷积神经网络 作业1. 高斯拉普拉斯算子(边缘检测)1.1 简介1.2 拉普拉斯算子1.3 高斯拉普拉斯算子1.3 LoG使用指南1.4 总结1.5 代码实现 2. 使用LeNet网络&#xff0c;输出特征图2.1 作业要求2.2 代码实现 卷积神经网络 作业 1. 高斯拉普拉斯算子(边缘检测) 作业要求…

深度学习传统CV算法——二阶微分边缘算子

二阶微分边缘算子 二阶微分边缘算子二阶微分边缘算子基本思想Laplace 算子拉普拉斯表达式图像中的Laplace 算子Laplace算法过程Laplace算子的旋转不变性证明Laplace算子优缺点 LOG算子LoG解决的问题LoG算子的计算过程LoG的卷积模板LoG算法过程DoG与LoGLoG算子优缺点 Canny算子C…