- 对于在一颗结点和层数比较多的二叉树上查找一个元素时, 二叉排序树的查找效率远远高于一颗普通的树。
如下为普通二叉树和二叉排序树:
假设查找结点20
/*** 二叉树结点*/
public class TreeNode {public int val;public TreeNode left;public TreeNode right;public TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}public TreeNode(int val) {this.val = val;}
在普通二叉树上查找:
//查找结点static int ct = 0;//记录比较次数public static boolean isExistTreeNode(TreeNode root, TreeNode target){if(root == null) return false;if(root.val == target.val) return true;ct ++;return isExistTreeNode(root.left,target) || isExistTreeNode(root.right, target);//普通查找}
在平衡二叉树上查找:
//查找结点static int ct = 0;public static boolean isExistTreeNode(TreeNode root, TreeNode target){if(root == null) return false;if(root.val == target.val) return true;ct ++;return target.val>root.val?isExistTreeNode(root.right,target):isExistTreeNode(root.left,target);//利用二叉排序树特点进行查找}
public class Main {public static void main(String[] args) {TreeNode node1 = new TreeNode(8);TreeNode node2 = new TreeNode(10);TreeNode node4 = new TreeNode(15);TreeNode node5 = new TreeNode(20);TreeNode node6 = new TreeNode(25);TreeNode node7 = new TreeNode(30);// node4.left = node2;// node2.left = node1;// node2.right = node5;// node4.right = node7;// node7.right = node6;//// isExistTreeNode(node4,new TreeNode(20));// System.out.println(ct); //比较次数为2node2.left = node1;node2.right = node5;node5.left = node4;node5.right = node7;node7.left = node6;isExistTreeNode(node4,new TreeNode(20));System.out.println(ct);//比较次数为1}
}
可以发现在普通二叉树上查找需要比较两次,二而二叉排序树上则只要一次。
(上面两颗树的结点和层数比较少,效果无法太明显体现出来,感兴趣的话可以尝试一下随机构建一颗层数和结点多普通二叉树,和二叉排序树来测试)
但是构建一颗的二叉排序树时,有时候某个结点的左子树远远深于右子树或者相反,此时我们会发现假设要查找的节点在比较深的子树时,比较次数还是会比较多,如何充分发挥二叉排序树的作用呢,二叉平衡排序树就出来了。
-
二叉平衡排序树
定义: 一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树的树。 在此基础上的平衡二叉树就是二叉平衡排序树。
如何将一颗二叉不平衡排序树变成一颗二叉平衡排序树呢?答案就是单旋(左旋|右旋) -
单旋(左旋|右旋)
下面就是一个左旋的图示:
对于该树,是一颗不平衡的书,右边深,需要左旋,将根节点右子树节点作为根节点,右子树的左子树过继给原来根节点的子节点。从而实现左旋。右旋也大同小异。 -
代码实现:
以上面的树为例
//树结点public class TreeNode {public int val;public TreeNode left;public TreeNode right;public TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}public TreeNode(int val) {this.val = val;}}
//判断二叉树是否平衡的public static boolean isBalance(TreeNode root){if(root == null) return true;int leftDeep = getDeep(root.left);int rightDeep = getDeep(root.right);if(Math.abs(leftDeep - rightDeep) > 1) return false;return isBalance(root.left) && isBalance(root.right);}//构建平衡二叉树public static TreeNode toBalanceTree(TreeNode root){if(root == null) return null;root.left = toBalanceTree(root.left);root.right = toBalanceTree(root.right);int leftDeep = getDeep(root.left);int rightDeep = getDeep(root.right);if(leftDeep - rightDeep > 1){//不平衡 左边深,需要右旋return rightRotate(root);}else if(rightDeep - leftDeep > 1){//不平衡 右边深, 需要左旋return leftRotate(root);}return root;}//左旋public static TreeNode leftRotate(TreeNode root){TreeNode originRoot = root;TreeNode newRoot = root.right;TreeNode tempBranch = newRoot.left;newRoot.left = originRoot;originRoot.right = tempBranch;return newRoot;}//右旋public static TreeNode rightRotate(TreeNode root){TreeNode originRoot = root;TreeNode newRoot = root.left;TreeNode tempBranch = newRoot.right;newRoot.right = originRoot;originRoot.left = tempBranch;return newRoot;}//求二叉树的深度public static int getDeep(TreeNode root){if(root == null) return 0;int leftDeep = getDeep(root.left);int rightDeep = getDeep(root.right);return leftDeep>rightDeep?leftDeep+1:rightDeep+1;}
public class Main2 {public static void main(String[] args) {/*** 单旋测试*///构建二叉树TreeNode node1 = new TreeNode(10);TreeNode node2 = new TreeNode(15);TreeNode node3 = new TreeNode(20);TreeNode node4 = new TreeNode(30);TreeNode node5 = new TreeNode(25);TreeNode node6 = new TreeNode(8);node1.right = node3;node1.left = node6;node3.left = node2;node3.right = node4;node4.left = node5;System.out.println(isBalance(node1));//falseTreeNode newRoot = toBalanceTree(node1);System.out.println(isBalance(newRoot));//trueSystem.out.println("构建完成");//debug一下}
查看结果:
可以看出,左旋操作,成功构建成平衡树了。
需要说的是,单旋操作具有局限性,也就是说并不是所有的二叉树都能实现单旋使之平衡,有些二叉树是一种极端情况,需要另外考虑。对应的后面会说到双旋(左右双旋|右左双旋)