数据库三大范式、BC范式、第四范式

article/2025/8/25 14:23:08

目录

  • 第一范式(1NF):原子性(存储的数据应该具有“不可再分性”)
  • 第二范式(2NF):唯一性 (消除非主键部分依赖联合主键中的部分字段)(一定要在第一范式已经满足的情况下)
  • 第三范式(3NF):独立性,消除传递依赖(非主键值不依赖于另一个非主键值)
  • BC范式(BCNF)
  • 第四范式(4NF):一个表的主键只对应一个多值


为了建立冗余较小、结构合理的数据库,设计数据库时必须遵循一定的规则。在关系型数据库中这种规则就称为范式。范式是符合某一种设计要求的总结。要想设计一个结构合理的关系型数据库,必须满足一定的范式。

第一范式(1NF):原子性(存储的数据应该具有“不可再分性”)

第一范式是最基本的范式。如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库表满足了第一范式
第一范式的合理遵循需要根据系统的实际需求来定。比如某些数据库系统中需要用到“地址”这个属性,本来直接将“地址”属性设计成一个数据库表的字段就行。但是如果系统经常会访问“地址”属性中的“城市”部分,那么就非要将“地址”这个属性重新拆分为省份、城市、详细地址等多个部分进行存储,这样在对地址中某一部分操作的时候将非常方便。

第二范式(2NF):唯一性 (消除非主键部分依赖联合主键中的部分字段)(一定要在第一范式已经满足的情况下)

第二范式在第一范式的基础之上更进一层。第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(主要针对联合主键而言)。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。
比如要设计一个订单信息表,因为订单中可能会有多种商品,所以要将订单编号和商品编号作为数据库表的联合主键,如下表所示。
订单信息表
在这里插入图片描述
这样就产生一个问题:这个表中是以订单编号和商品编号作为联合主键。这样在该表中商品名称、单位、商品价格等信息不与该表的主键相关,而仅仅是与商品编号相关。所以在这里违反了第二范式的设计原则。
而如果把这个订单信息表进行拆分,把商品信息分离到另一个表中,把订单项目表也分离到另一个表中,就非常完美了。如下所示。
在这里插入图片描述
这样设计,在很大程度上减小了数据库的冗余。如果要获取订单的商品信息,使用商品编号到商品信息表中查询即可。

第三范式(3NF):独立性,消除传递依赖(非主键值不依赖于另一个非主键值)

在一个具有主键的表中,假设主键为A,其必然其他非主键都依赖于该主键,比如:B依赖于A,C依赖于A,D依赖于A。。。。。。
但同时:如果该表中的某个字段B的值一确定,就能够确定另一个字段的值C,则我们称为C依赖于B。
那么,就出现了:
C依赖B,B依赖A——这就是传递依赖。
则消除该传递依赖的的通常做法,就是将C依赖于B的数据,分离到另一个表中。
好了,还是蒙蒙的吧,上例子:
不良例子:
在这里插入图片描述
以上表既满足第一范式也满足第二范式,非主键字段也完全依赖于主键字段。
但是,院系电话字段,其实是依赖院系字段的。也就是说,院系电话字段是非主键值,而依赖了另一个非主键值-院系。所以就不符合第三范式。
改良:
在这里插入图片描述
在这里插入图片描述
一个学生表,一个院系表,一目了然。
如果修改了院系信息,对应着也不需要修改学生信息表。但是如果还是使用以上不良例子的话,修改其中一个院系信息,得对应修改所有所属该院系的学生。

BC范式(BCNF)

数据库的三大范式只是最基本的,而BC范式也常与他们放到一起讨论,因为BCNF也被称为修正的第三范式,又或者说是扩充的第三范式。
为什么叫修正的第三范式?那么表示第三范式肯定有所缺漏,那么缺漏是什么呢?又如何补救呢?
我们看到第三范式的要求是每一个非主属性都要直接依赖于主属性,看似完美,可是如果除了主属性外,还有一个候选码呢?
显然从定义可以知道,这个主属性肯定能和候选码一一对应的,那这样岂不是又会造成冗余?
觉得很抽象吗?举个例子:

仓库(仓库编号,货物编号,仓库管理员编号)

其中每一个仓库管理员只管理一个仓库。
那么我们可以发现这里其实主码可以有两种,分别是:

(仓库编号) 可唯一确定 (仓库管理员编号,货物编号)
(仓库管理员编号) 可唯一确定 (仓库编号,货物编号)

必须要承认上述关系是符合第三范式的吧,但是有没有觉得这样仓库管理员编号会出现大量的没必要的冗余啊,因此BC范式就是解决这个问题的,需要将其改为两个表,顺便可以将货物的数量加进来。
至于为什么上面关系中我不将货物数量加进来,是因为一旦加进来后那个关系就不符合第二范式了,想想看,如果加入货物数量,那么主键就变成了(仓库编号,货物编号),可是仓库管理员只与仓库编号有关,不依赖于货物编号了呀,就不构成对主键的完全依赖关系了。
下面放上BC范式的修改版:
仓库与管理员表(仓库编号,仓库管理员编号)
仓库货物表(仓库编号,货物编号,货物数量)

第四范式(4NF):一个表的主键只对应一个多值

对于每一个X->Y,X都能找到一个候选码( 若关系中的某一属性组的值能唯一地表示一个元组,而其真子集不行,则称该属性组为候选码)。
设R是一个关系模型,D是R上的多值依赖集合。如果D中存在凡多值依赖X->Y时,X必是R的超键,那么称R是第四范式的模式。
例如,职工表(职工编号,职工孩子姓名,职工选修课程),在这个表中,同一个职工可能会有多个职工孩子姓名,同样,同一个职工也可能会有多个职工选修课程,即这里存在着多值事实,不符合第四范式。如果要符合第四范式,只需要将上表分为两个表,使它们只有一个多值事实,例如职工表一(职工编号,职工孩子姓名),职工表二(职工编号,职工选修课程),两个表都只有一个多值事实,所以符合第四范式。


参考资料
https://www.cnblogs.com/yinyoupoet/p/13287430.html
https://blog.csdn.net/A_art_xiang/article/details/113880638
https://www.jianshu.com/p/71563d6b121d


http://chatgpt.dhexx.cn/article/VPXJhJaJ.shtml

相关文章

【高效学数据库】第一范式、第二范式、BCNF范式、第三范式、第四范式概念及举例

本专栏将从基础开始,循序渐进的讲解数据库的基本概念以及使用,希望大家都能够从中有所收获,也请大家多多支持。 专栏地址: 数据库必知必会 如果文章知识点有错误的地方,请指正!大家一起学习,一起进步。 …

数据库-第一范式、第二范式、第三范式、BC范式、第四范式简析

在设计与操作维护数据库时,最关键的问题就是要确保数据能够正确地分布到数据库的表中。使用正确的数据结构,不仅有助于对数据库进行相应的存取操作,还可以极大地简化应用程序中的其他内容(查询、窗体、报表、代码等),按照“数据库…

专访戴文渊:第四范式(现在)是一家怎样的公司?

李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI △ 第四范式创始人及CEO戴文渊 第四范式是一家备受关注的公司。 仅创始团队成员来看,哪一个不是计算机、机器学习领域响当当的名字? 戴文渊是ACM2005全球冠军,百度机器学习系统带队打造者&…

Spark数据倾斜优化

Spark数据倾斜 就是数据分到各个区的数量不太均匀,可以自定义分区器,想怎么分就怎么分。 Spark中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题。 例如,reduced端一共…

Flink中的数据倾斜与解决方案实践

什么是数据倾斜 在使用一些大数据处理框架进行海量数据处理的过程中,可能会遇到数据倾斜的问题,由于大数据处理框架本身架构的原因,在框架层面,数据倾斜问题是无法避免的,只能在业务层面来缓解或者避免。 因为要处理…

spark处理数据倾斜的案例

在前期的工作遇到了很多数据倾斜的案例,在此记录下解决的心得 1) 大表join小表: 执行某段sql,出现了Executor OOM的现象,查看其stage的状况: 第3个stage读取了21.1G的数据,并shuffle写入了2.6G的数据,由于两个表根据字…

redis之数据倾斜如何处理

写在前面 我们在使用Redis分片集群时,集群最好的状态就是每个实例可以处理相同或相近比例的请求,但如果不是这样,则会出现某些实例压力特别大,而某些实例特别空闲的情况发生,本文就一起来看下这种情况是如何发生的以及…

实操 | Hive 数据倾斜问题定位排查及解决

Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例。当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措。 本文首发在…

数据倾斜原理及解决方案

导读 相信很多接触MapReduce的朋友对数据倾斜这四个字并不陌生,那么究竟什么是数据倾斜?又该怎样解决这种该死的情况呢? 何为数据倾斜? 在弄清什么是数据倾斜之前,我想让大家看看数据分布的概念: 正常的数据分布理论上都是倾斜的,就是我们所说的20-80原理&…

spark 数据倾斜调优

数据倾斜应该算是一个比较麻烦的问题,笔者也是刚刚开始学习相关的调优,将看到的比较全面、清晰的几种解决方案整合了一下,并加上了一些理解与心得,供参考! 首先,需要对spark执行计划有一定的基础与理解&am…

如何解决mysql数据倾斜_数据倾斜解决方案

1)聚合原数据(主要操作的是hive数据库中的数据,先通过hive sql将相同key的数据聚合成一条数据,再进行map操作) 当没办法聚合成一条数据时:增大key粒度,从而key的数量会减少,但是每个key对应的数据量会增大&#xff0c…

数据倾斜及其解决方式

数据倾斜是大数据领域绕不开的拦路虎,当你所需处理的数据量到达了上亿甚至是千亿条的时候,数据倾斜将是横在你面前一道巨大的坎。很可能有几周甚至几月都要头疼于数据倾斜导致的各类诡异的问题。 数据倾斜是指:mapreduce程序执行时&#xff0…

Hive 数据倾斜

数据倾斜,即单个节点任务所处理的数据量远大于同类型任务所处理的数据量,导致该节点成为整个作业的瓶颈,这是分布式系统不可能避免的问题。从本质来说,导致数据倾斜有两种原因,一是任务读取大文件,二是任务…

Spark数据倾斜解决

一、数据倾斜表现 数据倾斜就是数据分到各个区的数量不太均匀,可以自定义分区器,想怎么分就怎么分。 Spark中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题。 例如,redu…

大数据篇--数据倾斜

文章目录 一、什么是数据倾斜二、结合Shuffle1.结合mapreduce的shshuffle来说:(1)Shuffle 机制(2)Shuffle 阶段的优化 2.结合spark的shshuffle来说:(1)Spark任务调度:&am…

spark 数据倾斜

一. 数据倾斜的现象 1、spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个程序的运行速度(分布式程序运行的速度是由最慢的那个task决定的)比如,总共有1000个task,997个task都在1分…

Spark处理数据倾斜问题

写在前面:有博主的文章写的很好,很详细,推荐! 参考:Spark如何处理数据倾斜(甚好,甚详细,很有逻辑,强推!) spark数据倾斜解决方案汇总 1、什么是数…

如何处理Spark数据倾斜

一、什么是数据倾斜 在分布式集群计算中,数据计算时候数据在各个节点分布不均衡,某一个或几个节点集中80%数据,而其它节点集中20%甚至更少数据,出现了数据计算负载不均衡的现象。 数据倾斜在MR编程模型中是十分常见的&#xff0…

数据倾斜

数据倾斜 转载声明 本文大量内容系转载自以下文章,有删改,并参考其他文档资料加入了一些内容: Spark性能优化指南——高级篇 作者:李雪蕤 出处:美团技术团队博客漫谈千亿级数据优化实践:数据倾斜&#x…

大数据常见问题:数据倾斜的原理及处理方案

什么是数据倾斜 Hadoop能够进行对海量数据进行批处理的核心,在于它的分布式思想,通过多台服务器(节点)组成集群,共同完成任务,进行分布式的数据处理。 理想状态下,一个任务是由集群下所有机器…