Spark处理数据倾斜问题

article/2025/8/25 18:03:06

写在前面:有博主的文章写的很好,很详细,推荐!

参考:Spark如何处理数据倾斜(甚好,甚详细,很有逻辑,强推!)

            spark数据倾斜解决方案汇总


1、什么是数据倾斜

在执行shuffle操作的时候,数据是按照key对每行数据进行拉取、聚合等操作的。同一个key的数据Row,一定是分配到一个task中进行处理的。

当大量相同key的数据被partition分配到同一个分区里时,就会发生数据倾斜问题。

例子: 有数据行共是90万,可能某个key对应了88万数据,这88万个数据行就会被分配到同一个task上去面去执行。

另外的一些task,会被分配去处理剩下的2万行数据。那么这些task处理的数据比较少,可能1分钟就计算完毕;

但是那个处理88万行数据的task可能就需要30分钟、1小时,甚至更久才能处理完。

2、为什么会发生数据倾斜

 数据倾斜容易产生在两个过程,本身数据源的倾斜,这个主要由于本身文件的分布不均,主要是不能切分的文件isSplitable=false ,如.gz文件。

另外的在shuffle阶段,key的分布不均,导致大量的数据集中到单个或者某几个task上导致数据整个stage,执行慢,影响整个job作业,总结主要有以下两个过程:

1、数据源数据文件不均匀
2、计算过程中key的分布不均
        (1)单个rdd中进行groupby 的时候key分布不均
        (2)多个rdd进行join过程中key的不均匀

3、数据倾斜问题在spark中的常见表现

某个task任务 长时间卡在某一个百分比

1、大部分的task,都执行的特别特别快,剩下几个task,执行的特别特别慢。

2、运行的时候,其他task执行完了,但是有的task,会突然间报OOM,JVM Out Of Memory,内存溢出

4、数据倾斜问题快速定位

1.根据Spark UI查看metrics,input 以及shuffle read 两个metrics判断task的min,跟max是否差异较大,如果差异非常大,并且影响运行,则需要优化task input 数据源倾斜,input size统计是从外部数据源读入的大小

2.task shuffle 数据倾斜,一般主要是shuffle read拉取数据的时候,数据partition分布不均,导致fetch拉取过程中数据倾斜,可以通过Shuffle Read Size查看min,和max 值,如果差异非常大,并且影响运行,则需要优化

3.另外就是我们在运行中个别task执行特别慢的时候,我们可以看一下该task的input或者shuffle reader的Summary Metrics里面min和max值,一般情况下处理的数据越多,task的运行时间越长,理想情况下所有的task数据均匀分布,运行时长均等,可以定位到task所属的stage,通过stage 描述,可以定位到所属的代码行,进而优化代码

5、怎么处理数据倾斜问题

1、数据源数据文件不均匀

 适用场景:对于数据源单个spark input read数据量过大,或者单个task 相对于其他task spark input read较大的情况,读取数据源明显不均匀

 解决方式:尽量使用可切割的文本存储,生成尽量多的task进行并行计算

 优点:从数据源避免倾斜,并且从源头增大并行度,避免倾斜
 缺点:需要改造数据源,支持可切割

2、Shuffle过程中数据分布不均

原理:
       Shuffle阶段在分布式并行计算引擎中是常见一个过程,在spark中当一个RDD的数据需要被多个子RDD所使用的时候,我们需要进行shuffle将数据打散,把数据均匀的分配给子RDD进行并行计算,Shuffle过程中spark默认使用HashPartitioner对数据进行分区,在这个过程中可能由于我们的数据分布不均,我们在进行hash取摸的时候,并行度设置不足,导致多数据分配到一个task上,导致倾斜,或者就是相同key的数据hash取摸之后就是比较大,分配同一个task导致数据倾斜等,对于这行情况我们分以下场景进行解决

(1) 适用场景:大量的数据分配到相同的task中,导致倾斜
  解决方案:通过repartition强制进行shuffle,增大并行度,将数据分布的更加均匀; 设置spark.default.parallelism和自定义分区,增大并行度;如果是sql的话,调整spark.sql.shuffle.partitions增大并行数量,从而将倾斜数据分配到更多的task减少倾斜;

 优点:对于部分key倾斜,可以通过增大并行数,或者自定义分区,将数据分布的更加均匀,减少数据倾斜

缺点:  对于单个key倾斜,只能根据业务自定分区,减少数据倾斜

(2)适用场景:两个数据集差别较大,并且出现task数据倾斜,较小的数据集可以放到内存中map中进行join

解决方案:通过增大spark.sql.autoBroadcastJoinThreshold 阈值默认10M

优点:减少大的数据集shuffle,从而导致数据倾斜

缺点:  join小表的数据需要足够小,能放到executor storage memory中

6、总结

 数据倾斜无法避免,也有没有一劳永逸的解决方式,处理数据倾斜是一个长期的过程需要我们慢慢积累经验,基本思想就是

         1.首先从源头选择可以split的数据源,从源头避免倾斜

         2.shufle过程中,增加并行度,减少shuffle 在map-side进行数据合并,避免reduce fetch数据倾斜

         3.sample采样将倾斜的数据,特殊处理,这个方法可以适用于所有的数据倾斜问题,

        4.另外,就是我们尽量使用spark-sql,spark-sql里面优化器提供很多基本CRO和CBO的优化策略,不仅帮我们从源头帮我们去除无关的数据减少计算数据量,其次在计算过程中会根据我们的table 的数据量,自动帮我们计算合适task partition数量,和选择合适join策略,从而提升计算性能,也避免shufle 数据倾斜


http://chatgpt.dhexx.cn/article/iyUU44Zp.shtml

相关文章

如何处理Spark数据倾斜

一、什么是数据倾斜 在分布式集群计算中,数据计算时候数据在各个节点分布不均衡,某一个或几个节点集中80%数据,而其它节点集中20%甚至更少数据,出现了数据计算负载不均衡的现象。 数据倾斜在MR编程模型中是十分常见的&#xff0…

数据倾斜

数据倾斜 转载声明 本文大量内容系转载自以下文章,有删改,并参考其他文档资料加入了一些内容: Spark性能优化指南——高级篇 作者:李雪蕤 出处:美团技术团队博客漫谈千亿级数据优化实践:数据倾斜&#x…

大数据常见问题:数据倾斜的原理及处理方案

什么是数据倾斜 Hadoop能够进行对海量数据进行批处理的核心,在于它的分布式思想,通过多台服务器(节点)组成集群,共同完成任务,进行分布式的数据处理。 理想状态下,一个任务是由集群下所有机器…

数据倾斜问题

一、什么是数据倾斜 简单来说,就是在数据计算的时候,数据会分配到不同的task上执行,当数据分配不均匀导致某些大批量数据分配到某几个task上就会造成计算不动或者异常的情况。 二、数据倾斜表现形式 1、大部分的task在计算的时候计算的特别…

数据倾斜常见原因和解决办法

数据倾斜在MapReduce编程模型中十分常见,多个节点并行计算,如果分配的不均,就会导致长尾问题(大部分节点都完成了任务,一直等待剩下的节点完成任务),本文梳理了常见的发生倾斜的原因以及相应的解…

数据倾斜产生,原因及其解决方案

目录 第七章 数据倾斜 7.1 数据倾斜的产生,表现与原因 7.1.1 数据倾斜的定义 7.1.2 数据倾斜的危害 7.1.3 数据倾斜发生的现象 7.2 数据倾斜倾斜造成的原因 7.3 几种常见的数据倾斜及其解决方案 7.3.1 空值引发的数据倾斜 7.3.2 不同数据类型引发的数据倾斜…

数据倾斜原理与解决方法

数据倾斜的概念 数据倾斜这四个字经常会在学习MapReduce中遇到。所谓数据分区,就是数据分区分布因为数据本身或者分区方法的原因变得极为不一致,大量的数据被划分到了同一个区。由于Reducer Task每次处理一个区的数据,这导致Reducer Task处理…

什么是缓存穿透、缓存雪崩、缓存击穿

缓存穿透 缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库,失去了缓存保护后端存储的意义。 解决方案 缓存空值 如果访问数据库后还未命中,则把一…

缓存穿透和缓存击穿

一、背景介绍 几乎所有互联网公司都采用缓存的方案来解决瞬时流量超高,或者长期流量过高的问题。但使用缓存存在风险——缓存穿透和缓存击穿:简单的讲就是如果该数据原本就不存在,那么就会发生缓存穿透;如果缓存内容因为各种原因…

缓存穿透,缓存雪崩,缓存击穿

一,缓存穿透 原因:一个请求来访问某个数据,发现缓存中没有,直接去DB中访问。此种情况就是穿透。(正常情况下缓存跟数据库中数据都是存在,异常情况下会导致) 特点:因传递了非法的key,导致缓存跟数据库中都无法查询 方…

如何避免缓存穿透、缓存击穿、缓存雪崩?

如何避免缓存穿透、缓存击穿、缓存雪崩? 缓存穿透 先来看一下缓存穿透,顾名思义,是指业务请求穿过了缓存层,落到持久化存储上。在大多数场景下,我们应用缓存是为了承载前端业务请求,缓存被击穿以后&#x…

缓存穿透、缓存击穿、缓存雪崩解决方案

微信搜索【程序员囧辉】,关注这个坚持分享技术干货的程序员。 前言 ​ 我一个QPS不到10的项目,天天问我缓存穿透、缓存击穿、缓存雪崩,我是真滴难。 可能大家经常会有这种感受,但是只要是面试要问的题目,就算用不上&…

缓存穿透 缓存击穿 缓存雪崩 这三者是什么 如何处理

通常我们使用缓存中间件的方式 将数据库的热点数据缓存到Redis中 尽量去缓存中查找数据,目的就是为了减轻数据库的压力 那什么是 缓存穿透,缓存击穿 与 缓存雪崩 呢 ? 缓存穿透 当Redis中不存在某个key时,将对数据库进行查询操作 但如果数据库也不存在 就会造成每一个请求即…

应对缓存击穿的解决方法

一.什么样的数据适合缓存? 分析一个数据是否适合缓存,我们要从访问频率、读写比例、数据一致性等要求去分析. 二.什么是缓存击穿 在高并发下,多线程同时查询同一个资源,如果缓存中没有这个资源,那么这些线程都会去数据库查找,对数据库造成极大压力,缓存失去存在的意义.打个…

redis缓存击穿

缓存击穿: 缓存击穿是指,针对某个访问非常频繁的热点数据的请求,无法在缓存中进行处理,紧接着,访问该数据的大量请求,一下子都发送到了后端数据库,导致了数据库压力激增,会影响数据…

【缓存】缓存穿透、缓存击穿、缓存雪崩及其解决方案

文章目录 缓存穿透缓存击穿缓存雪崩大量数据同时过期Redis 故障宕机 总结来源 用户的数据一般都是存储于数据库,数据库的数据是落在磁盘上的,磁盘的读写速度可以说是计算机里最慢的硬件了。 当用户的请求,都访问数据库的话,请求数…

Redis 缓存击穿,缓存穿透,缓存雪崩原因+解决方案

一、前言 在我们日常的开发中,无不都是使用数据库来进行数据的存储,由于一般的系统任务中通常不会存在高并发的情况,所以这样看起来并没有什么问题,可是一旦涉及大数据量的需求,比如一些商品抢购的情景,或者…

Redis缓存击穿、雪崩、穿透!(超详细)

缓存的击穿、穿透和雪崩应该是再熟悉不过的词了,也是面试常问的高频试题。 不过,对于这三大缓存的问题,有很多人背过了解决方案,却少有人能把思路给理清的。 而且,网络上仍然充斥着,大量不太靠谱的解决方案…

缓存穿透、缓存击穿、缓存雪崩如何应对

参考连接:redis避免缓存穿透为什么缓存空对象而不是null? - 知乎 缓存穿透:key对应的数据在数据源并不存在,每次针对此key的请求从缓存获取不到,请求都会到数据源,从而可能压垮数据源。比如用一个不存在的…

缓存穿透、缓存击穿、缓存雪崩区别和解决方案

一、缓存处理流程 前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果。 二、缓存穿透 描述: …