为什么要做深度学习而不是宽度学习?

article/2025/11/9 22:20:21

                                                                                                                                                   点击此处返回总目录

 

前面在深度学习介绍的最后有留下一个疑问。我们为什么要deep learning。

                             

我们说,变深了,参数增多,model变复杂,performance变好,是很正常的。

所以,真正要比较一个深度model和一个shallow(浅层) model的时候,你要调整两个model,让他们的参数是一样多的。这样才有说服力。很多人在比较deep 和shallow model 的时候,没有注意到这件事,这样对比是不公平的。你要让两者的参数一样多,这样才公平,这种情况下shallow的model就是一个矮胖的model,deep的model就会是一个高瘦的model。接下来的问题就是,在这个公平的评比之下,shallow比较强还是deep比较强呢?

                               

所以,刚才的实验结果是有后半段的。后半段的实验结果是这样的,用5层,每层2K个神经元得到的error是17.2%。另外,用1层,3772个神经元得到的error是22.5%,为什么是3772个神经元呢?因为这样这两个网络的参数是接近的。我们发现1层的error比较大。

同样,7层每层2K个神经元和1层4634个神经元,他们的参数是接近的。发现1层的也是比较差的。

甚至,增加参数变成1层但是有16K个神经元,error也只是从22.6变到22.1而已。

当用一层非常非常宽的网络(参数多),跟只有2层每层2K个神经元的网络(参数少)相比,效果还不如后者。

                                    

 

在很多人的想象里面,deep learning就是一个暴力碾压的方法,我弄一个很大很大的model,然后collect一大堆的data,所以就得到了一个比较好的performance,它就是一个暴力的方法。实际上,你会发现不是这样子。如果你今天只是单纯地增加参数,你是让网络长宽而不是长高的话,其实对performance的帮助是比较小的。把网络长高对performance很有帮助,把网络长宽帮助没有那么好。

 

----------------------------------------------------------------------------------------------------------------------------

为什么会这样呢?

我们可以想象说,当我们在做deep learning的时候,其实我们是在做模块化这件事情。什么意思呢,大家应该都会写程序,写程序的时候不能把所有的代码都写在一个函数里面,而是写一些子函数。然后层层调用。这样做的好处是,有的函数可以共用,不用每次都写,进而减小程序的复杂度。

                                

 

如果用在machine learning上面呢。假设我们要做图像分类。我们要把image分成4类。长发男,长发女,短发男,短发女。然后我们对这四类去收集data,然后去train 4个分类器,然后就可以解决这个问题。但是长发男生的examples可能是比较少的,所以没有太多的training data,所以分类器2就比较弱,它的performance就比较差。

 

                      

 

那怎么办呢?你可以用模块化的思想。

假设我们现在不是直接去解那个问题,而是把原来的问题切成比较小的问题,比如我们去learn一些分类器,这个分类器的工作呢,是去detect 有没有一种attribute(属性)出现。比如这里不是这里不是直接detect长发男生还是长发女生,而是把这个问题切成比较小的问题。切成两个问题,输入一张图片判断是长头发还是短头发,输入一张图片判断是男生还是女生。虽然说长头发的男生数量很少,但是男生女生的data可以收集很多。同样长头发和短头发的data也可以收集很多。所以,在train这个basic 分类器的时候,就不会说train的太差。这个分类器都有足够的data。

                             

 

接下来呢,要解最后的问题,四个分类器只需要参考前面的basic 分类器就好了。每一个分类器都公用前面的basic 分类器。后面可以用前面的分类器。后面分类器的参数只需要很少的data就可以train好,因为真正复杂的事都被basic 分类器做了。

                  

 

deep learning怎么跟模块化扯上关系呢?每一个神经元就是一个basic的分类器。第一层的是最basic的,第二层的把第一层的当做模块...以此类推。当然要强调的是说,在做deep learning的时候,怎么做模块化这件事情是machine自动学到的。

                    

刚才我们说,模块化的好处是什么?模块化的好处是,让我们的模型变简单了。我们是把本来复杂的问题,变得比较简单。当我们把问题变简单的时候,就算training data没有那么多,我们也可以把这个task做好。如果deep learning做的是模块化的话,那其实,神奇的是,deep learning需要的data是比较少的。

                    

这跟我们的认知是相反的。很多人会说没有big data,deep learning就不会work。其实,并不是这样。如果数据量非常多,比如有全世界的图片,再来做图像分类,就不需要deep learning了。所以deep learning在某种程度上是跟big data是相反的。就是因为没有足够的data,我们才用machine learning去举一反三。

 

在图像上面,可以观察到类似模块化的现象。

                            

 

在声音上面,deep learning 也显示模块化的思想。

 

----------------------------------------------------------------------------------------------------------------------------

我们回到很久以前提到过的University theory。过去有个理论告诉我们说,任何的连续函数f都可以用一层神经网络来完成。只要那一层神经网路够宽的话。这是在90年代很多人放弃做deep learning的一个原因。只要一层隐藏层就可以表示任何的function,那deep learning的意义何在呢?所以很多人说deep 是没有必要的,我们就只要一个隐藏层就好。但是这个理论有个事情没有告诉我们。它只告诉我们可能性,没有告诉我们要做到这件事情有多有效率。

没错,只要有够多的参数,就可以描述任何的function。但是当我们用一个隐藏层来描述function的时候,它是没有效率的。当使用deep structure来描述的时候,是比较有效率的。

                           

----------------------------------------------------------------------------------------------------------------------------

如果刚才模块化的概念没有听明白的话,我们举另外一个例子。

学过逻辑电路的可以看一下。就不讲了。

 

如果没学过的话,还有一个剪窗花的例子。也不讲了。

 

----------------------------------------------------------------------------------------------------------------------------

当我们用deep learning的时候呢,另外一个好处是,我们可以做end-to-end learning.所谓的end-to-end learning,意思是这样。

比如说我们要处理的问题呢,非常复杂。比如语音识别。我们要解一个machine learning的问题,我们首先要找一个Model。当你要处理的问题很复杂的时候,你的model它会需要是一个生产线。这个model表示一个很复杂的function,是由很多个比较简单的function串叠在一起。比如说要做声音识别,先把声音信号送进来,然后通过很多个function一层一层的转换,最后变成文字。当做end-to-end learning的时候,就是说,只给你的model input和output,不告诉它说中间每一个function要怎么分工,让它自己去学每一个点要做什么事情。在deep learning里,要做这件事情的时候,就是叠一个很深的神经网络,每一层就是生产线上的一个点,就是一个简单的函数,每一层就会自己学到应该做什么事情。

 

                               

比如说,在声音识别里面,还没有用deep learning 的时候,怎么做呢?现有一段声音信号,然后先做DFT,变成spectrogram,然后再做Filter bank,再取log,然后再做DCT,得到MFCC,再把MFCC丢掉GMM里面,得到结果。在整个生产线上面呢,只有最后的GMM是由training data学出来的,其他的都是手工做的。其他的部分都是古圣先贤花了好几十年研究出来的。

 

                                  

但是有了deep learning以后,我们就可以把手工的这些步骤用神经网络取代掉。比如可以把DCT拿掉,直接从log后面加deep learning。甚至可以从spectrogram开始用深度学习做,把后面的都拿掉。

有人挑战说,能不能叠一个很深很深的网络,直接输入是声音信号,输出是文字,中间完全不用做什么傅里叶变换。如果傅里叶变换都不用做,就可以不用学信号系统了。后来这件事情的结局是这样的,Google拼死learn了一个很大的网络,输入就是声音信号,输出是文字。最后可以做到跟有做傅里叶变换的结果打平。但是也仅仅是打平,这说明傅里叶变换很强,或许它已经是信号处理的极限了,machine learning learn出来的结果,其实也就是傅里叶变换。所以,信号系统还是必要的。

                                 

 

刚才是声音的例子,图像也差不多,就不多说了。过去图像处理也是很多的人工的步骤,但现在也就直接用一个很深的网络,输入是像素,输出是文字。

                                     

 

                                    

 

----------------------------------------------------------------------------------------------------------------------------

 

deep learning还有什么好处呢?

通常我们task,是非常复杂的。有时候非常像的input,会有很不一样的output。比如白色的狗和北极熊看起来很像,但是output不一样。有时候非常不一样的东西,看起来是一样的。比如下面两个都是火车。

                            

如果,网络只有一层的话,只能做简单的transform,没有办法把一样的东西变成不一样,没法把不一样的东西变得很像。

要让原来input很不一样的东西变成一样,需要做很多层次的转换。举例来说,看下面的例子。这来自12年的一篇文章。做的事情是,把MFCC投影到二维平面上,不同颜色代表不同人说的话。这些人说的话是一样的。看左图,同样的句子,不同的人说声音信号很不一样。如果今天learn 一个神经网络,只看第一层的hidden layer的output,你会说不同的人说的同一个句子还是很不一样。但是如果看第8个隐藏层的输入的话,会发现不同人说的同一个句子在一起了。也就是说,dnn在转换的时候把本来看起来很不像的东西,就把他们连在一起了。本来很不像,经过8个layer的变换以后,就变得很像了。

 

          

刚才是语音的例子,如果用手写数字辨识的例子,输入是这样。如果把28*28的像素投影到二维平面的话,看起来是input这样。你会发现4跟9几乎是叠在一起的。几乎没有办法分开。第一个隐藏层的output,还是很像,没有分的太开。看第二个hidden layer,会发现逐渐分开。第三个分的更开。所以要让本来看的很像的分的很开,也需要好多层才能办到这件事。

                                 

 

----------------------------------------------------------------------------------------------------------------------------

 

其实还有更多,用deep learning的理由了。比如这个人,第一个PPT是Do deep net really need to be deep?第二页PPT就写了个yes,然后留了很多时间让大家问问题。哈哈

                           

 

还有一些其他的解释,可以自己去看。

                             

 

 

 

 

 


http://chatgpt.dhexx.cn/article/PhtnGBfG.shtml

相关文章

宽度学习学习笔记

宽度学习笔记 随机向量函数链接网络(RVFLNN)增强节点权值计算Greville 定理 宽度学习系统(Broad Learning System)数据处理简单BLS增强节点的增量学习特征节点的增量学习输入的增量学习SVD 参考论文: Broad Learning …

宽度学习(一):宽度学习体系:有效和高效的无需深度架构的增量学习系统

Motivation 深度学习: 1,时间长:由于涉及到大量的超参数和复杂的结构,大多数神经网络的训练过程非常耗时。 2,重新训练:如果要更改神经网络的结构,或者增加样本,深度学习系统将遇到一个完整的重新训练过程。 宽度学习: 1,消除了训练过程长的缺点,并且提供了很好的…

第三十七课.宽度学习

目录 前置内容宽度学习的基本结构:RVFLNN宽度学习系统岭回归 前置内容 深度学习计算量过大,成本过高,因此提出宽度学习(BLS,Broad Learning System)。我们首先要知道,BLS的网络结构不是固定的&…

宽度学习详解(Broad Learning System)

宽度学习(Broad Learning System) 1:Introduction1.1:级联相关网络(本节来自周志华《机器学习》)1.2:随机向量函数连接网络(RVFLNN) 2:宽度学习系统(Broad Learning Syst…

七、宽度学习系统Broad Learning System

七、宽度学习系统Broad Learning System 1、宽度学习的发展2、宽度学习系统(BLS)3、 BLS的增量形式1、宽度学习的发展 宽度学习系统(BLS) 的提出最早源于澳门大学科技学院院长陈俊龙和其学生于2018年1月发表在IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,…

宽度学习(Broad Learning System)

一、宽度学习的前世今生 宽度学习系统(BLS) 一词的提出源于澳门大学科技学院院长陈俊龙和其学生于2018年1月发表在IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,VOL. 29, NO. 1 的一篇文章,题目叫《Broad Learnin…

宽度学习(BLS)实战——python复刻MNIST数据集的数据预处理及训练过程

目录 1.宽度学习(Broad Learning System) 2.MNIST数据集 3.复刻MNIST数据集的预处理及训练过程 1.宽度学习(Broad Learning System) 对宽度学习的理解可见于这篇博客宽度学习(Broad Learning System)_颹蕭蕭的博客-CSDN博客_宽度学习 这里不再做详细…

《Linux设备驱动开发详解(第3版)》(即《Linux设备驱动开发详解:基于最新的Linux 4.0内核》)进展同步更新

本博实时更新《Linux设备驱动开发详解(第3版)》的最新进展。 目前已经完成稿件。 2015年8月9日,china-pub开始上线预售: http://product.china-pub.com/4733972 2015年8月20日,各路朋友报喜说已经拿到了书。 本书已经rebase到开发中的Linu…

linux_设备驱动_设备树

一.什么是DTS?为什么要引入DTS? DTS即Device Tree Source 设备树源码, Device Tree是一种描述硬件的数据结构,它起源于 OpenFirmware (OF)。 在Linux 2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/ma…

Linux设备驱动模型(一)

一、sysfs文件系统 sysfs是一个虚拟文件系统,将内核总的设备对象的链接关系,以文件目录的方式表示出来,并提对设备提供读写接口。 二、kobject kobject是内核中对象表示的基类,可以认为所有的内核对象都是一个kobject kobject单…

Linux设备驱动基础03:Linux字符设备驱动

1 Linux文件系统与设备驱动 1.1 文件系统与设备驱动之间的关系 Linux中文件系统与设备驱动程序之间的关系如下图所示, 应用程序和VFS之间的接口是系统调用;VFS和文件系统以及设备文件之间的接口是file_operations结构体中的成员函数,该结构体…

Linux 设备驱动程序(二)

系列文章目录 Linux 内核设计与实现 深入理解 Linux 内核 Linux 设备驱动程序(一) Linux 设备驱动程序(二) Linux 设备驱动程序(三) Linux 设备驱动程序(四) Linux设备驱动开发详解 …

Linux驱动——字符设备驱动

目录 一、代码编译环境 二、Linux驱动开发分类 三、字符设备驱动开发流程 1.编译驱动模块代码(Makefile) 2.驱动模块的加载与卸载 四、字符设备驱动编写 1.驱动模块 2. 字符设备驱动编写步骤 2.1 设备号的注册与注销 2.2 设备节点的注册与注销 …

【Linux设备驱动】设备驱动分类

Linux设备驱动分类 驱动分为有操作系统设备驱动和误操作系统的设备驱动。 有无操作系统设备驱动 无操作系统设备驱动 不是所有的计算机系统都一定要有操作系统,在许多情况下,操作系统都是不必存在的。对于功能比较单一、控制不复杂的系统&#xff0c…

Linux-设备驱动概述

文章目录 Linux设备驱动概述1. 设备驱动的作用2. 无操作系统的设备驱动3. 有操作系统时的设备驱动4. Linux设备驱动4.1 设备的分类及特点4.2 Linux设备驱动与整个软硬件系统的关系4.3 Linux设备驱动的重难点 5. 源代码阅读6. 设备驱动:LED驱动6.1 无操作系统的LED驱…

Linux设备驱动和设备匹配过程

Linux设备驱动和设备匹配过程 1. 设备驱动匹配简述2. 重点结构体介绍2.1 struct device2.2 struct platform_device2.3 struct platform_driver2.4 struct device_driver 3. device端发起匹配:3.1 流程图3.2 start_kernel时候解析设备树3.2.1 start_kernel3.2.2 set…

Linux设备驱动之字符设备驱动

一、linux系统将设备分为3类:字符设备、块设备、网络设备。 应用程序调用的流程框图: 三种设备的定义分别如下, 字符设备:只能一个字节一个字节的读写的设备,不能随机读取设备内存中的某一数据,读取数据需…

Linux设备驱动基础01:Linux设备驱动概述

目录 1. 设备驱动的作用 2. 有无操作系统时的设备驱动 2.1 无操作系统 2.1.1 硬件、驱动和应用程序的关系 2.1.2 单任务软件典型架构 2.2 有操作系统 2.2.1 硬件、驱动、操作系统和应用软件的关系 3. Linux设备分类 3.1 常规分类法 3.1.1 字符设备 3.1.2 块设备 3.…

Linux设备驱动模型

目录 一、linux设备驱动模型简介1、什么是设备驱动模型2、为什么需要设备驱动模型3、驱动开发的2个点 二、设备驱动模型的底层架构1、kobject2、kobj_type3、kset 三、总线式设备驱动组织方式1、总线2、设备3、驱动4、类5、总结 四、platform平台总线工作原理1、何为平台总线2、…

【linux内核分析与应用-陈莉君】字符设备驱动

目录 1.什么是字符设备 2.如何来描述字符设备 3 struct cdev与const struct file_operations之间的关系 4.struct file_operations源码 5.字符设备驱动框架 6.编写字符设备驱动的步骤 7.字符设备结构 8.字符设备驱动程序的注册 9.从系统调用到驱动程序 10.用户空间与内…