L1正则化 L2正则化的Python 实现

article/2025/9/21 6:32:31

上一篇文档 https://blog.csdn.net/xingzhe2001/article/details/86316712 介绍了L1 L2正则化

本文介绍L1, L2 正则化的实现

L1正则化

\lambda \sum_{i=1}^n|\theta_i|

代码

def L1Norm(l, theta):return  np.dot(np.abs(theta), np.ones(theta.size)) * ldef L1NormPartial(l, theta):return np.sign(theta) * l

以线性回归为例,J函数现在变成了

L2正则化

\lambda \sum_{i=1}^n \theta_i^2

def L2Norm(l, theta):return  np.dot(theta, theta) * l def L2NormPartial(l, theta):return theta * l

以线性回归为例 J函数变为

    def __Jfunction(self):        sum = 0for i in range(0, self.m):err = self.__error_dist(self.x[i], self.y[i])sum += np.dot(err, err)sum += Regularization.L2Norm(0.8, self.theta)return 1/(2 * self.m) * sum

J函数导数变为

    def __partialderiv_J_func(self):sum = 0for i in range(0, self.m):err = self.__error_dist(self.x[i], self.y[i])sum += np.dot(self.x[i], err)sum += Regularization.L2NormPartial(0.8, self.theta)return 1/self.m * sum

 


http://chatgpt.dhexx.cn/article/OM6OGF0h.shtml

相关文章

一文了解L1正则化与L2正则化

正则化的目的? 欠拟合从字面意思来看就是欠缺拟合程度,这一般在复杂度很低的模型中出现。从数学上来看,一元一次函数为一条直线、一元二次函数为一个曲线,以此类推。那么参数越多,其越能拟合更复杂的特征,…

【学习笔记】深刻理解L1和L2正则化

深刻理解L1和L2正则化 学习视频:BV1Z44y147xA、BV1gf4y1c7Gg、BV1fR4y177jP up主:王木头学科学 L1、L2正则化即使用L1、L2范数来规范模型参数。 凡是减少泛化误差,而不是减少训练误差的方法,都可以称为正则化方法。 通俗来说&am…

L1正则化和L2正则化(从解空间角度)

文章目录 一、什么是过拟合?二、为什么模型会过拟合?三、如何防止模型过拟合?四、L1正则和L2正则4.1 L1、L2的区别4.2 为什么正则化能够防止过拟合?4.3 为什么L1正则具有稀疏性或者说L1正则能够进行特征选择? 最后&…

机器学习之L1正则化和L2正则化(附源码解析)

前言 今天还是机器学习的基础知识内容,也是最基础的哈。首先说一下什么是正则化,其实它就是一个减少方差的策略。那么什么是方差呢?在这里也引入一个和方差相辅相成的概念--偏差。 偏差度量了学习算法的期望预测与真实结果的偏离程度&#…

L2正则化(Regularization)

正则化(Regularization) 深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取…

pytorch实现L2和L1正则化regularization的方法

pytorch实现L2和L1正则化的方法 目录 目录 pytorch实现L2和L1正则化的方法 1.torch.optim优化器实现L2正则化 2. 如何判断正则化作用了模型? 2.1 未加入正则化loss和Accuracy 2.1 加入正则化loss和Accuracy 2.3 正则化说明 3.自定义正则化的方法 3.1 自定…

L1正则化与L2正则化的区别

摘要 正则化的本质是在Cost Function中添加的p-范数。本文从正则化的本质p-范数入手,解释了L1正则化和L2正则化的区别。 正则化 在Cost Function上添加了正则化项,就能降低模型的过拟合程度,这就是正则化的作用。 关于正则化更细节的讲述&…

正则化的作用以及L1和L2正则化的区别

0 正则化的作用 正则化的主要作用是防止过拟合,对模型添加正则化项可以限制模型的复杂度,使得模型在复杂度和性能达到平衡。 常用的正则化方法有L1正则化和L2正则化。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些…

详解L1和L2正则化

大纲: L1和L2的区别以及范数相关知识对参数进行L1和L2正则化的作用与区别pytorch实现L1与L2正则化对特征进行L2正则化的作用 L1和L2的区别以及范数 使用机器学习方法解决实际问题时,我们通常要用L1或L2范数做正则化(regularization&#xf…

L1正则化和L2正则化的详细直观解释

正则化(Regularization) 转自:此处 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者…

L1正则化和L2正则化讲解

L1正则化和L2正则化讲解 在机器学习实践过程中,训练模型的时候往往会出现过拟合现象,为了减小或者避免在训练中出现过拟合现象,通常在原始的损失函数之后附加上正则项,通常使用的正则项有两种:L1正则化和L2正则化。 L1…

L1正则化和L2正则化的区别

文章目录 前言一、L1和L2正则化是什么?二、区别三、其他问题 前言 在防止过拟合的方法中有L1正则化和L2正则化,那么这两者有什么区别呢? 一、L1和L2正则化是什么? L1和L2是正则化项,又叫做惩罚项,是为了限…

数据预处理之L1,L2正则化

一、L1、L2正则化概述 1. L1和L2的定义 L1正则化,又叫Lasso Regression 如下图所示,L1是向量各元素的绝对值之和 L2正则化,又叫Ridge Regression 如下图所示,L2是向量各元素的平方和,然后再求平方根 2.L1和L2的异同点 …

L1正则化和L2正则化

在机器学习以及深度学习中我们经常会看到正则化这一名词,下面就浅谈一下什么是正则化?以及正则化的意义所在? 一、什么是正则化? 正则化项 (又称惩罚项),惩罚的是模型的参数,其值恒为非负 λ是正则化系数&…

【应用】【正则化】L1、L2正则化

L1正则化的作用:特征选择从可用的特征子集中选择有意义的特征,化简机器学习问题。著名的LASSO(Least Absolute Shrinkage and Selection Operator)模型将L1惩罚项和线性模型结合,使用最小二乘代价函数。L1正则化导致模…

机器学习中正则化项L1和L2的直观理解

文章目录 正则化(Regularization)稀疏模型与特征选择的关系 L1和L2正则化的直观理解正则化和特征选择的关系为什么梯度下降的等值线与正则化函数第一次交点是最优解? L2正则化和过拟合的关系 正则化参数的选择L1正则化参数L2正则化参数 Refer…

微信小程序自定义授权弹框

前言 最近微信获取用户信息的接口有调整&#xff0c;就是这货&#xff1a;wx.getUserInfo(OBJECT)&#xff0c;文档描述如下&#xff1a; 此接口有调整&#xff0c;使用该接口将不再出现授权弹窗&#xff0c;请使用 <button open-type"getUserInfo"></but…

微信小程序组件 - 中间底部弹出输入弹框

GitHub Demo 地址: jh-weapp-demo 实现一些常用效果、封装通用组件和工具类 小程序码 一、 jh-input-alert 中间输入弹框&#xff0c;可设置最大输入长度&#xff0c;单行多行显示 单行 <jh-input-alert title输入框标题 placeholder请输入 maxlength10 bind:cancelcancel …

微信小程序展示弹窗的几种方式

小程序中展示弹窗有四种方式&#xff1a;showToast、showModal、showLoading、showActionSheet 官方文档链接 效果图 wxml <!-- 1.消息提示框 --> <button size"mini" bindtap"handleShowToast">ShowToast</button><!-- 2.模态对话…

微信小程序——小程序自己的页面弹框

微信小程序——小程序自己的页面弹框 1. 页面样式: 2.代码块 在这里插入代码片 &#xff08;一&#xff09;.wxml文件中给一个触发事件 <image src"../../img/icon-delete.png" bindtapdeleteCar data-id{{car.platecard}} class"icon"></imag…