宽度 深度学习 特点对比

article/2025/11/9 22:15:19

宽度 & 深度学习 特点对比

    • 推荐系统
    • 模型介绍
    • 实验过程与实验结果
    • 实验总结

  为了提高神经网络的性能,是应该增加宽度呢?还是应该增加深度呢?增加宽度和增加深度各有什么样的效果呢?
本文对论文《Wide & Deep Learning for Recommender Systems Heng-Tze》中关于宽度模型和深度模型的对比实验进行介绍。

推荐系统

  本论文基于推荐系统,推荐系统的运作如图。以APP推荐为例,首先用户在查询入口输入关键字,系统自动将Database中的items对关键字进行匹配,从而Retrieval一定的items,这些items将根据之前使用用户的各种行为数据logs学习到的model进行Ranking,从而将用户更可能下载的APP排在前面。

在这里插入图片描述

模型介绍

  这里的模型,是针对上图中的Model模型。作者提及在推荐系统中最重要的两个特性是Memorize和generalize。Memorize的过程就是根据以往用户的数据训练模型的过程,类似training;generalize就是使用model对新的输入数据进行预测。
  作者对比了三种模型,如下图,分别是宽度模型(wide models),深宽结合模型(wide&deep models)深度模型(deep models)。对于各模型的特点理解,故名思意,不做更多解释。
在这里插入图片描述

实验过程与实验结果

  作者进行了3周的实时在线实验。对于对照组,作者随机选择1%的用户,并提供由之前版本的排名模型生成的推荐建议,这是一种高度优化的仅限广泛的逻辑回归模型,具有丰富的跨产品特征转换。对于实验组,1%的用户会收到由Wide&Deep models生成的建议,并使用相同的功能集进行训练。如表1所示,Wide&Deep models相对于对照组,应用程序商店主登陆页面上的应用程序获取率提高了3.9%(统计上显着)。结果也与另一个1%组进行比较,仅使用具有相同特征和神经网络结构的模型的深部,并且Wide&Deep models在仅deep models之上具有+ 1%的增益(具有统计显着性)。

在这里插入图片描述

  除了在线实验,作者器操作员特征曲线下面积(AUC)。 虽然Wide&Deep的离线AUC略高,但对在线流量的影响更为显着。 一个可能的原因是离线数据集中的印象和标签是固定的,而在线系统可以通过将概括与记忆相结合来产生新的探索性建议,并从新的用户响应中学习。

实验总结

  记忆和概括对于推荐系统都很重要。 宽线性模型可以使用跨产品特征转换有效地记忆稀疏特征交互,而深度神经网络可以通过低维嵌入来生成以前看不见的特征交互。作者介绍了Wide&Deep学习框架,以结合两种模型的优势。 作者在Google Play的推荐系统上制作并评估了该框架,Google Play是一个大规模的商业应用商店。 在线实验结果表明,Wide&Deep models在仅wide和仅deep models上的应用程序获取方面取得了显着改进。

  通俗地讲
  1.wide models能够从训练数据中学习到重要的特征,对训练数据达到高度拟合。但是更换数据后,数据特征改变,wide models的预测能力就会下降,所以说,wide models的泛化能力不够;
  2.deep models能够从训练数据中挖掘出更抽象的特征,这使得它具有很好的泛化能力,但是对单组数据来说,它的拟合能力比不上wide models;
  3.wide&deep models的结构类似于卷积神经网络中将不同级别的特征层信息进行融合使用,既有低级纹理信息又有高级语义信息;
  4.第一条和第二条还可以这样说,wide models容易过拟合,deep models不易过拟合。


http://chatgpt.dhexx.cn/article/KMIPrs6n.shtml

相关文章

为什么是“深度”学习而不是宽度?

为什么是深度而不是宽度? 先说说我个人的理解,如下图所示,圆圈表示神经元,有两种方式。第一种,只有一层神经层,有8个神经元;第二种方式,有两层神经层,分别有2个和4个神经…

宽度学习系统:一种不需要深度结构的高效增量学习系统

宽度学习系统:一种不需要深度结构的高效增量学习系统 本文是对陈俊龙教授团队“Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture”的中文综述,原文将在IEEE Transactions on Neu…

网络的宽度如何影响深度学习模型的性能?

大家好,这是专栏《AI不惑境》的第三篇文章,讲述模型宽度与模型性能的关系。 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考。如果说学习是一个从模仿,到追随,到创造的过程&#xff0…

宽度学习代码的一些问题

最近在拜读陈院士的宽度学习论文,受益匪浅,在此先感谢陈院士团队的开源代码! 在复现代码的过程中,发现了一些小问题,在此记录,方便自己日后翻阅。 此博客仅代表个人观点,姑且算作个人读书笔记…

DeepLearning | Broad Learning System 宽度学习系统 : 高效增量式浅层神经网络

Broad Learning System (BLS,宽度学习系统)是澳门大学的陈俊龙教授在2017年TNNLS上基于随机向量函数链接神经网络(RVFLNN)和单层前馈神经网络(SLFN)提出的一种单层增量式神经网络。这个模型相比于传统的深层网络模型,它在保证一定精度的同时,…

宽度学习系统(BLS)的原理、变体形式及当前应用(随时更新......)

ABSTRACT 近年来深度学习迅猛在各个研究领域发展发展,新的模型结构不断涌现,且有层数逐渐加深的趋势。然而深度模型往往有数量过于庞大的待优化参数,通常需要耗费大量的时间和机器资源来进行优化,而且不能根据需求及输入的变化进行…

为什么要做深度学习而不是宽度学习?

点击此处返回总目录 前面在深度学习介绍的最后有留下一个疑问。我们为什么要deep learning。 我们说,变深了,参数增多,model变复杂,performance变好,是很正常的。 所以,真…

宽度学习学习笔记

宽度学习笔记 随机向量函数链接网络(RVFLNN)增强节点权值计算Greville 定理 宽度学习系统(Broad Learning System)数据处理简单BLS增强节点的增量学习特征节点的增量学习输入的增量学习SVD 参考论文: Broad Learning …

宽度学习(一):宽度学习体系:有效和高效的无需深度架构的增量学习系统

Motivation 深度学习: 1,时间长:由于涉及到大量的超参数和复杂的结构,大多数神经网络的训练过程非常耗时。 2,重新训练:如果要更改神经网络的结构,或者增加样本,深度学习系统将遇到一个完整的重新训练过程。 宽度学习: 1,消除了训练过程长的缺点,并且提供了很好的…

第三十七课.宽度学习

目录 前置内容宽度学习的基本结构:RVFLNN宽度学习系统岭回归 前置内容 深度学习计算量过大,成本过高,因此提出宽度学习(BLS,Broad Learning System)。我们首先要知道,BLS的网络结构不是固定的&…

宽度学习详解(Broad Learning System)

宽度学习(Broad Learning System) 1:Introduction1.1:级联相关网络(本节来自周志华《机器学习》)1.2:随机向量函数连接网络(RVFLNN) 2:宽度学习系统(Broad Learning Syst…

七、宽度学习系统Broad Learning System

七、宽度学习系统Broad Learning System 1、宽度学习的发展2、宽度学习系统(BLS)3、 BLS的增量形式1、宽度学习的发展 宽度学习系统(BLS) 的提出最早源于澳门大学科技学院院长陈俊龙和其学生于2018年1月发表在IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,…

宽度学习(Broad Learning System)

一、宽度学习的前世今生 宽度学习系统(BLS) 一词的提出源于澳门大学科技学院院长陈俊龙和其学生于2018年1月发表在IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,VOL. 29, NO. 1 的一篇文章,题目叫《Broad Learnin…

宽度学习(BLS)实战——python复刻MNIST数据集的数据预处理及训练过程

目录 1.宽度学习(Broad Learning System) 2.MNIST数据集 3.复刻MNIST数据集的预处理及训练过程 1.宽度学习(Broad Learning System) 对宽度学习的理解可见于这篇博客宽度学习(Broad Learning System)_颹蕭蕭的博客-CSDN博客_宽度学习 这里不再做详细…

《Linux设备驱动开发详解(第3版)》(即《Linux设备驱动开发详解:基于最新的Linux 4.0内核》)进展同步更新

本博实时更新《Linux设备驱动开发详解(第3版)》的最新进展。 目前已经完成稿件。 2015年8月9日,china-pub开始上线预售: http://product.china-pub.com/4733972 2015年8月20日,各路朋友报喜说已经拿到了书。 本书已经rebase到开发中的Linu…

linux_设备驱动_设备树

一.什么是DTS?为什么要引入DTS? DTS即Device Tree Source 设备树源码, Device Tree是一种描述硬件的数据结构,它起源于 OpenFirmware (OF)。 在Linux 2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/ma…

Linux设备驱动模型(一)

一、sysfs文件系统 sysfs是一个虚拟文件系统,将内核总的设备对象的链接关系,以文件目录的方式表示出来,并提对设备提供读写接口。 二、kobject kobject是内核中对象表示的基类,可以认为所有的内核对象都是一个kobject kobject单…

Linux设备驱动基础03:Linux字符设备驱动

1 Linux文件系统与设备驱动 1.1 文件系统与设备驱动之间的关系 Linux中文件系统与设备驱动程序之间的关系如下图所示, 应用程序和VFS之间的接口是系统调用;VFS和文件系统以及设备文件之间的接口是file_operations结构体中的成员函数,该结构体…

Linux 设备驱动程序(二)

系列文章目录 Linux 内核设计与实现 深入理解 Linux 内核 Linux 设备驱动程序(一) Linux 设备驱动程序(二) Linux 设备驱动程序(三) Linux 设备驱动程序(四) Linux设备驱动开发详解 …

Linux驱动——字符设备驱动

目录 一、代码编译环境 二、Linux驱动开发分类 三、字符设备驱动开发流程 1.编译驱动模块代码(Makefile) 2.驱动模块的加载与卸载 四、字符设备驱动编写 1.驱动模块 2. 字符设备驱动编写步骤 2.1 设备号的注册与注销 2.2 设备节点的注册与注销 …