MAE简记

article/2025/11/10 19:57:16

MAE简记

文章目录

      • MAE简记
        • Mask 方法
        • Encoder
        • Decoder
        • Target & LOSS

Mask 方法

  • 将图片分割成不重复的正方形patch,遮挡其中一部分patch(75%)

Encoder

  • 采用ViT,但是只对可见的没有被masked的patch使用

Decoder

  • 以encoder的输出+masked的patch作为输入,想要恢复原本的图像
  • 解码器也是用一系列的Transformer Block组成

Target & LOSS

  • 目标是恢复图像,因此使用pixel级别的loss——MSE,但是只对masked patch做

http://chatgpt.dhexx.cn/article/Jpbnp0LR.shtml

相关文章

何凯明最新一作MAE解读系列1

导读 凯明出品,必属精品。没有花里胡哨的修饰,MAE就是那么简单的强大,即结构简单但可扩展性能强大。MAE通过设计一个非对称的编码解码器,在预训练阶段,通过高比例的掩码原图,将可见部分输入到编码器中&…

基于CIFAR数据集 进行 MAE实现及预训练可视化 (CIFAR for MAE,代码权重日志全部开源,自取)

基于CIFAR数据集 进行 MAE实现及预训练可视化 (CIFAR for MAE,代码权重日志全部开源,自取) 文章目录 基于CIFAR数据集 进行 MAE实现及预训练可视化 (CIFAR for MAE,代码权重日志全部开源,自取&a…

PyTorch笔记 - MAE(Masked Autoencoders) PyTorch源码

欢迎关注我的CSDN:https://blog.csdn.net/caroline_wendy 本文地址:https://blog.csdn.net/caroline_wendy/article/details/128382935 Paper:MAE - Masked Autoencoders Are Scalable Vision Learners 掩码的自编码器是可扩展的视觉学习器 …

何凯明新作MAE 学习笔记

【MAE与之前AI和CV领域最新工作的关系】 学习MAE视频【李沐】 He, K., Chen, X., Xie, S., Li, Y., Dollr, P., & Girshick, R. (2021). Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377. 【Transformer】 Transforme纯注意力&…

MAE 代码实战详解

MAE 代码实战详解 if__name__"__main__"model.forwardmodel.forward.encordermodel.forward.decordermodel.forward.loss大小排序索引-有点神奇torch.gather if__name__“main” MAE 模型选择 def mae_vit_base_patch16_dec512d8b(**kwargs):model MaskedAutoenco…

MAE(Masked Autoencoders) 详解

MAE详解 0. 引言1. 网络结构1.1 Mask 策略1.2 Encoder1.3 Decoder 2. 关键问题解答2.1 进行分类任务怎么来做?2.2 非对称的编码器和解码器机制的介绍2.3 损失函数是怎么计算的?2.4 bert把mask放在编码端,为什么MAE加在解码端? 3. …

MAE-DET学习笔记

MAE-DET学习笔记 MAE-DET: Revisiting Maximum Entropy Principle in Zero-Shot NAS for Efficient Object Detection Abstract 在对象检测中,检测主干消耗了整个推理成本的一半以上。最近的研究试图通过借助神经架构搜索(NAS)优化主干架构…

MAE论文解读

文章目录 创新点算法原理MaskingMAE encoderMAE decoder重构目标 实验Baseline: ViT-Large.消融实验Mask token自监督方法比较迁移至目标检测任务及语义分割任务 结论 论文: 《Masked Autoencoders Are Scalable Vision Learners》 代码: https://github.com/facebookresearc…

MSE与MAE

均方误差 均方误差(MSE)是最常用的回归损失函数,计算方法是求预测值与真实值之间距离的平方和,公式如图。 下图是MSE函数的图像,其中目标值是100,预测值的范围从-10000到10000,Y轴代表的MSE取值范围是从0到正无穷&…

论文阅读|MAE

Masked Autoencoders Are Scalable Vision Learners 参考资料 Self-Supervised Learning 超详细解读 (六):MAE:通向 CV 大模型 - 知乎 (zhihu.com) Self-Supervised Learning 超详细解读 (目录) - 知乎 (zhihu.com)、 1. 有监督(Supervise…

MAE论文笔记

MAE论文笔记 Masked Autoencoders Are Scalable Vision Learners MAE模型和其他的结构的关系,可以认为是在ViT的基础上实现类似于BERT的通过完型填空获取图片的理解 标题和作者 Masked Autoencoders Are Scalable Vision Learners 其中的Autoencoders 中的auto是…

MAE

背景 作者开门见山说明了深度学习结构拥有越来越大的学习容量和性能的发展趋势,在一百万的图像数据上都很容易过拟合,所以常常需要获取几百万的标签数据用于训练,而这些数据公众通常是难以获取的。MAE的灵感来源是DAE(denosing autoencoder)…

RMSE(均方根误差)、MSE(均方误差)、MAE(平均绝对误差)、SD(标准差)

RMSE(Root Mean Square Error)均方根误差 衡量观测值与真实值之间的偏差。 常用来作为机器学习模型预测结果衡量的标准。 MSE(Mean Square Error)均方误差 MSE是真实值与预测值的差值的平方然后求和平均。 通过平方的形式便于…

【深度学习】详解 MAE

目录 摘要 一、引言 二、相关工作 三、方法 四、ImageNet 实验 4.1 主要属性 4.2 与先前结果的对比 4.3 部分微调 五、迁移学习实验 六、讨论与结论 七、核心代码 Title:Masked Autoencoders Are Scalable Vision LearnersPaper:https://arx…

MAE模型介绍

目录 介绍 模型 ​编辑 实验过程 结论 介绍 Masked Autoencoders Are Scalable Vision Learners Facebook Al的kaiming大神等人于2021年十一月提出了一种带自编码器(MAE),它基于(ViT)架构。他们的方法在imageNet上的表现要好于从零开始训练的VIT。 灵感来源&…

深度学习:MAE 和 RMSE 详解

平均绝对误差MAE(mean absolute error) 和均方根误差 RMSE(root mean squared error)是衡量变量精度的两个最常用的指标,同时也是机器学习中评价模型的两把重要标尺。 那两者之间的差异在哪里?它对我们的生活有什么启示…

RMSE、MAE等误差指标整理

1 MAE Mean Absolute Error ,平均绝对误差是绝对误差的平均值 for x, y in data_iter:ymodel(x)d np.abs(y - y_pred)mae d.tolist()#maesigma(|pred(x)-y|)/m MAE np.array(mae).mean() MAE/RMSE需要结合真实值的量纲才能判断差异。 下图是指,假如g…

MAE详解

目录 一、介绍 二、网络结构 1. encoder 2. decoder 3. LOSS 三、实验 全文参考:论文阅读笔记:Masked Autoencoders Are Scalable Vision Learners_塔_Tass的博客-CSDN博客 masked autoencoders(MAE)是hekaiming大佬又一新作,其做法很…

crontab用法详解

crontab命令用于设置周期性被执行的命令,适用于日志备份,清理缓存,健康状态检测等场合。 crontab的配置文件:/etc/crontab

linux的crontab用法与实例

linux的crontab用法与实例 crontab的适用场景 在Linux系统的实际使用中,可能会经常让系统在某个特定时间执行某些任务的情况,比如定时采集服务器的状态信息、负载状况;定时执行某些任务/脚本来对远端进行数据采集或者备份等操作。 首先通过…