1024,你懂的

article/2025/9/18 15:25:51

哎呀,是不是被标题党套路了,不过认真读完,会有收获的哦,相信我。话说小拾君最近逛知乎,无意间被某些帖子指引,发现知乎已经快被1024攻占了,哈哈,然后今天准备跟大家科普一下1024。各位老司机们看看就好,千万不要开车.......

1024,你懂的

1024的起源。

经小拾君向诸多老司机求证,以及在度娘的帮助下,小拾君终于知道了1024的来历了。1024最早起源了某社区(什么社区,1024你懂的)为了防止新手在不了解版规的情况下乱发广告恶意灌水,而设定的回帖时间间隔是1024秒,如果时间不足1024秒,则帖子将被1024代替。后因为在计算机中1024M=1GB,谐音一级棒,而衍生为各大论坛顶、Up等的替代品。(其实从另一个角度也说明1024的用户基数以及影响好大)。当然现在还有另一层意思,就是1024社区用户的身份暗语,哈哈,这个或许跟中国的归属认同感有关吧(老乡见老乡,两眼泪汪汪啊,连1024都要身份认同了,大家一说1024,立马知道原来是同道中人啊)。好了扯远了,再扯本文也1024了啊。

其实本文是个科普贴,除了大家所熟悉的1024外,1024还有哪些意义呢?

小编也是一名从事了6年java开发的全栈工程师,花了近一个月整理了一份较适合18年学习的java干货,送给每一位java小伙伴,加Q群领取


http://chatgpt.dhexx.cn/article/Je4XPb3K.shtml

相关文章

smooth L1 loss个人理解

最近在整理目标检测损失函数,特将Fast R-CNN损失函数记录如下: smooth L1 损失函数图像如下所示: L1损失的缺点就是有折点,不光滑,导致不稳定。 L2 loss的导数(梯度)中包含预测值与目标值的差值…

L1和L2范数

L0范数是指向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W中非0元素的个数最少,即大部分元素都是0。换句话说,希望让参数W是稀疏的。 L1范数是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则…

L1 loss L2 loss Smooth L1 loss

L1 loss & L2 loss & Smooth L1 loss 微信公众号:幼儿园的学霸 个人的学习笔记,关于OpenCV,关于机器学习, …。问题或建议,请公众号留言; 关于神经网络中L1 loss & L2 loss & Smooth L1 loss损失函数的对比、优缺点分析 目录…

CPU一级缓存L1 D-cache\L1 I-cache与二级缓存L2 cache深度分析

CPU缓存:通过优化的的读取机制,可以使CPU读取缓存的命中率非常高(大多数CPU可达90%左右), 也就是说CPU下一次要读取的数据90%都在缓存(SRAM)中; 只有大约10%需要从内存(DRAM、DDR等&#xff0…

深度学习剖根问底:正则化L1和L2范式

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。 L1正…

L1和L2损失函数

L1和L2损失函数 文章目录 L1和L2损失函数简介L1 损失函数L2 损失函数一个例子代码最后 简介 最近参加了某高校的夏令营面试,被问到一个基础的损失函数的概念,发现自己对于模式识别的掌握可以说不能再皮毛了。夏令营估计是凉了,还是老老实实总…

【86】ASPM进入和退出L1

之前写过一篇power management的介绍,主要是介绍了一下power management的概念,这次主要是介绍下ASPM和ASPM L1机制。 【67】PCIe Power Management和linux对PME的处理_linjiasen的博客-CSDN博客 1、ASPM介绍 ASPM全称Active State Power Management&a…

L1 L2范式

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。 L1正…

L1正则项-稀疏性-特征选择

原文链接: http://chenhao.space/post/b190d0eb.html L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择。 所谓稀疏模型就是模型中很多的参数是0,这就相当于进行了一次特征选择,只留下了一些比较重要的特征&a…

梳理L1、L2与Smooth L1

关于L1、L2的范数、损失函数和正则化,之前一直混淆这几个概念,故对这几天看过的资料进行了学习总结。 范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性&#xff…

L1范数与L2范数的区别与联系

L1范数与L2范数的区别与联系 一、过拟合与正则化 过拟合指的就是在机器学习模型训练过程中把数据学习的太彻底,以至于把噪声数据的特征也学习到了,这样会导致在测试的时候不能够很好地识别数据,即不能正确的分类,模型测试的时候不…

L1正则化及其稀疏性的傻瓜解释

本文翻译自:L1 Norm Regularization and Sparsity Explained for Dummies, 特别感谢原作者Shi Yan! 0. 前言 好吧,我想我就是很笨的那一类人。 当理解一个抽象的数学概念,我必须把它转化成一张图像,然后在…

L1/L2范数

文中内容为一下博文整理而来 https://blog.csdn.net/iterate7/article/details/75443504 https://blog.csdn.net/zhaomengszu/article/details/81537197 什么是范数 范数是具有“长度”概念的函数。在向量空间内,为所有的向量的赋予非零的增长度或者大小。不同的范…

机器学习——L1范数充当正则项,让模型获得稀疏解,解决过拟合问题

问:使用L2范数正则项比L1范数正则项得到的是更为稀疏的解。 答:错误,L1范数正则项得到的是更稀疏的解。因为在L1正则项中,惩罚项是每个参数绝对值之和;而在L2正则项中,惩罚项是每个参数平方的和。L1正则项…

L1、L2的作用

L范式都是为了防止模型过拟合,所谓范式就是加入参数的约束。 L1的作用是为了矩阵稀疏化。假设的是模型的参数取值满足拉普拉斯分布。 L2的作用是为了使模型更平滑,得到更好的泛化能力。假设的是参数是满足高斯分布。 借用公众号python与算法社区的内容20…

机器人设计范式

“ 本期技术干货,我们邀请到了小米机器人实验室工程师徐海望,和大家分享在机器人学领域中,关系到机器人的行为模式或操作模型的三种行为执行逻辑,分别是分级范式(hierarchical paradigm)、反应范式&#xf…

数据库设计之范式与反范式

范式设计 什么是范式? 范式来自英文Normal Form,简称NF。要想表之间设计—个好的关系,必须使关系 满足一定的约束条件,此约束已经形成了规范,分成几个等级,一级比一级要求 得严格。满足这些规范的数据库是…

详解数据库的第一范式、第二范式、第三范式、BCNF范式

版权声明:本文转自小小呆原创文章 https://blog.csdn.net/gui951753/article/details/79609874 第一范式 定义以及分析:问题研究: 第二范式 必备知识点定义分析:解决办法:问题研究: 第三范式: 定义&…

关系范式

一、数据需要规范化的原因: 1.数据冗余大 2.防止更新异常 3.防止插入异常 4.删除异常 数据库范式分为1NF,2NF,3NF,BCNF,4NF,5NF 一张表按照范式的不同等级划分将分为多张表,每张表都是一个…

9.3范式

第一范式:定义:不包含非原子项属性的关系是第一范式的关系。 第二范式:定义:如果R(U,F)1NF,并且R中的每个非属性都完全函数依赖于主键,则R(U,F) 2NF。可以用模式分解的办法将非第二范式关系分解…