多元线性回归检验

article/2025/8/27 20:04:54

多元线性回归模型通常用来研究一个应变量依赖多个自变量的变化关系,如果二者的以来关系可以用线性形式来刻画,则可以建立多元线性模型来进行分析。

1.t检验

t检验是对单个变量系数的显著性检验,一般看p值; 如果p值小于0.05表示该自变量对因变量解释性很强。

2.F检验

F检验是对整体回归方程显著性的检验,即所有变量对被解释变量的显著性检验     

   

 

    

F检验其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

3.P值

P值就是t检验用于检测效果的一个衡量度,t检验值大于或者p值小于0.05就说明该变量前面的系数显著,选的这个变量是有效的。

4.R方

拟合优度检验

   

R平方也有其局限性:R平方随着自变量的增加会变大,R平方和样本量是有关系的。因此,我们要到R平方进行修正。得到R平方值adjusted,来评判线性回归模型的拟合度。修正的方法:

     

n为样本数量,p为特征数量

  • 消除了样本数量和特征数量的影响

5.调整后的R方

t检验 --用于对各变量系数显著性检验 --判断标准:一般用p值 0.05来衡量  小于0.05 显著    大于0.05不显著

 F检验 --整体回归方程显著性检验(所有自变量对因变量的整体解释) --判定:  需查统计分布表来确定

P值:就是用于t检验和F检验的衡量指标。

R方:整体回归方程拟合优度检验,R方的结果越接近于1越好,但是R方会因增加变量而增大,所以引进了调整R方检验。

调整R方:对R方检验的提升,避免受增加变量对R方的影响,配合向后删除模型观测。

不显著的原因概述:不显著有很多原因造成,可能是你的这个变量本身与被解释变量没有相关关系,所以不显著;也可能是解释变量过多,由多重共线性引起,也可能是其他原因。

 

在进行多元线性回归时,常用到的是F检验和t检验,F检验是用来检验整体方程系数是否显著异于零,如果F检验的p值小于0.05,就说明,整体回归是显著的。然后再看各个系数的显著性,也就是t检验,计量经济学中常用的显著性水平为0.05,如果t值大于2或p值小于0.05就说明该变量前面的系数显著不为0,选的这个变量是有用的。

https://www.cnblogs.com/tinglele527/p/12015449.html


http://chatgpt.dhexx.cn/article/7bbnM5nr.shtml

相关文章

[DataAnalysis]多元线性回归深入浅出-案例+模型假设+参数估计方法+模型评判方法+变量选择+多重共线性问题

一、案例介绍 1、目的:利用上市公司当年的公开财务指标预测来年盈利情况最重要的投资人决策依据。 2、数据来源:随机抽取深市和沪市2002和2003年的500个上市公司样本预测来年的净资产收益率。 3、解释变量包括:资产周转率、当年净资产收益…

基于spss的多元回归分析模型

还是数学建模中的一个小问题,具体概念分析在百度上的大佬说的已经足够详细,在此不再赘述。 链接: 多元回归分析. 我主要根据实例讲解如何通过spss进行建模,并进行模型参数的分析和验证。 打开spss(如果遇到打不开的情况&#x…

多元线性回归分析预测法概述

在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如&#xff0…

用R进行多元线性回归分析建模

概念:多元回归分析预测法,是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 下面我就举几个例子来说明一下 例一:谋…

基于Python的多元线性回归分析

一、多元线性回归分析(Multiple regression) 1.与简单线性回归相比较,具有多个自变量x 2.多元回归模型 其中是误差值,与简单线性回归分析中的要求特点相一致。其余的系数和截距为参数。 3.多元回归方程 4.估计多元回归方程(点估…

多元线性回归--案例分析及python实践

回归分析--多元回归 介绍一下多元回归分析中的统计量 总观测值总自变量自由度:回归自由度 ,残差自由度 SST总平方和 SSR回归平方和 SSE残差平方和 MSR均方回归 MSE均方残差 判定…

回归分析:多元线性回归模型 白话解析与案例实现

文章目录 线性学习多元线性回归模型多元线性回归模型的python实现 线性学习 回归分析是研究自变量x与因变量y的关系的方法。 上一节我们介绍了一元线性回归,经验公式为: $ \hat{y}\hat{\beta}1 x\hat{\beta}0 $ 在实际生活中,我们要研究的…

多元统计分析——多元线性回归

1. 经典的线性回归分析与交叉验证 examDict{ 学习时 :[0.50, 0.75, 1.00, 1.25,1.50,1.75, 1.75,2.00, 2.25,2.50, 2.75,3.00,3.25,3.50,4.00,4.25,4.50,4.75,5.00,5.50], 分:[10,22,13 ,43,20,22,33,50,62 , 48,55,75,62,73,81,76,64,82,90,93]} examDf pd.DataFrame(examDi…

spss进行多元线性回归并分析表格(转载)

1.如何使用spss进行多元线性回归。 2.分析生成结果,并判断回归是否可行。 一、使用spss进行多元线性回归: 1.输入数据 二、表格结果分析: R方是检验回归是否成功的重要要素之一,DW是残差独立性检验,衡量标准如下&…

数据分析方法--回归分析方法((SPSS建模:多元线性回归案例)

文章目录 回归定义最常用回归方法一、线性回归(Linear Regression)二、逻辑回归(Logistic Regression)三、多项式回归(Polynomial Regression)四、逐步回归(Stepwise Regression)五、岭回归(Ridge Regression)六、套索回归(Lasso Regression)七、回归(ElasticNet) 如何正确选择…

线性回归 - 多元线性回归案例 - 分析步骤、输出结果详解、与Python的结果对比 -(SPSS建模)

现在用 Python 写线性回归的博客都快烂大街了,为什么还要用 SPSS 做线性回归呢?这就来说说 SPSS 存在的原因吧。 SPSS 是一个很强大的软件,不用编程,不用调参,点巴两下就出结果了,而且出来的大多是你想要的…

SPSS--回归-多元线性回归模型案例解析!(一)

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如&#x…

多元回归分析(线性回归)

多元线性回归分析 一、回归的基本理解(1)回归的基本任务(2)回归里的关键词(3)回归里的数据类型(4)回归方程中的系数解释(5)扰动项要满足的条件(1&…

多元线性回归分析详细介绍

一文搞懂——多元线性回归分析 回归分析定义回归的使命回归分析的分类数据的分类数据的收集 线性回归对于线性的理解回归系数的解释核心解释变量和控制变量四类模型回归系数的解释特殊的自变量:虚拟变量X含有交互项的自变量 回归实例题目Stata解决第一步&#xff1a…

多元线性回归分析示例

GLM模型应用于脑功能影像分析时,在某个因素影响下,由beta图,经过t检验得到脑区显著激活的区域。应用于其他地方也可加深我们对于模型的理解。 clc,clear; X[ 136.5 215136.5 250136.5 180138.5 2501…

【课程设计】计算机组成与系统结构

计算机组成与系统结构课程设计(2020.12) 保姆式教程 目录 计算机组成与系统结构课程设计(2020.12)一、本课程设计的性质、目的、任务二、本课程设计的基本理论三、课程设计的主要内容四、微程序流程图(树形图)五、模型机微指令表六、机器指令程序的说明…

计算机组成与系统结构课程设计

课程设计题目 综合运用所学计算机原理知识,设计并实现具有以下16条指令的指令集结构的模型计算机: 编号 助记符 机器指令码 说明 0 SUB Rd,Rs 0000 RdRs Rd-Rs→Rd 1 ADD Rd,Rs 0001 RdRs RdRs→Rd 2 AND Rd,Rs 0010 RdRs Rd&Rs→Rd (Rd和…

计算机毕业设计、计算机课程设计怎么做?计算机设计1900套来帮你!

计算机毕业设计、计算机课程设计怎么做?计算机设计1900套来帮你! 人生做什么事都有套路,大学毕业设计、课程设计通常比较简单,大多数都是找个项目做参考,有的人随便抄一抄糊弄一下,只要查重,格…

pycharm 安装numpy包——超简单

非常简单的安装步骤,自己百试不爽哦,废话不多说直接上图按以下步骤进行即可 一、找到安装numpy的地方 file→settings→project interpreter,点击右侧的+号 二、进行numpy 安装 搜索框内手动输入numpy进行搜索,选中…

python 如何安装numpy库?

(我的微信:Kingsplusa,我总结了人工智能手推笔记和思维导图,欢迎一起进步学习。) 首先我们要找到python安装的位置 winR打开 进入以后输入: where python 找到安装目录后,找到Scripts文件…