回归分析--多元回归
介绍一下多元回归分析中的统计量
- 总观测值
- 总自变量
- 自由度
:回归自由度
,残差自由度
- SST总平方和
- SSR回归平方和
- SSE残差平方和
- MSR均方回归
- MSE均方残差
- 判定系数R_square
- 调整的判定系数Adjusted_R_square
- 复相关系数Multiple_R
- 估计标准误差
- F检验统计量
- 回归系数抽样分布的标准误差
- 各回归系数的t检验统计量
- 各回归系数的置信区间
- 对数似然值(log likelihood)
- AIC准则
- BIC准则
案例分析及python实践
# 导入相关包
import pandas as pd
import numpy as np
import math
import scipy
import matplotlib.pyplot as plt
from scipy.stats import t
# 构建数据
columns = {'A':"分行编号", 'B':"不良贷款(亿元)", 'C':"贷款余额(亿元)", 'D':"累计应收贷款(亿元)", 'E':"贷款项目个数", 'F':"固定资产投资额(亿元)"}
data={"A":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25],"B":[0.9,1.1,4.8,3.2,7.8,2.7,1.6,12.5,1.0,2.6,0.3,4.0,0.8,3.5,10.2,3.0,0.2,0.4,1.0,6.8,11.6,1.6,1.2,7.2,3.2],"C":[67.3,111.3,173.0,80.8,199.7,16.2,107.4,185.4,96.1,72.8,64.2,132.2,58.6,174.6,263.5,79.3,14.8,73.5,24.7,139.4,368.2,95.7,109.6,196.2,102.2],"D":[6.8,19.8,7.7,7.2,16.5,2.2,10.7,27.1,1.7,9.1,2.1,11.2,6.0,12.7,15.6,8.9,0,5.9,5.0,7.2,16.8,3.8,10.3,15.8,12.0],"E":[5,16,17,10,19,1,17,18,10,14,11,23,14,26,34,15,2,11,4,28,32,10,14,16,10],"F":[51.9,90.9,73.7,14.5,63.2,2.2,20.2,43.8,55.9,64.3,42.7,76.7,22.8,117.1,146.7,29.9,42.1,25.3,13.4,64.3,163.9,44.5,67.9,39.7,97.1]}df = pd.DataFrame(data)
X = df[["C", "D", "E", "F"]]
Y = df[["B"]]
# 构建多元线性回归模型
from sklearn.linear_model import LinearRegression
lreg = LinearRegression()
lreg.fit(X, Y)x = X
y_pred = lreg.predict(X)
y_true = np.array(Y).reshape(-1,1)coef = lreg.coef_[0]
intercept = lreg.intercept_[0]
# 自定义函数
def log_like(y_true, y_pred):"""y_true: 真实值y_pred:预测值"""sig = np.sqrt(sum((y_true - y_pred)**2)[0] / len(y_pred)) # 残差标准差δy_sig = np.exp(-(y_true - y_pred) ** 2 / (2 * sig ** 2)) / (math.sqrt(2 * math.pi) * sig)loglik = sum(np.log(y_sig))return loglikdef param_var(x):"""x:只含自变量宽表"""n = len(x)beta0 = np.ones((n,1))df_to_matrix = x.as_matrix()concat_matrix = np.hstack((beta0, df_to_matrix)) # 矩阵合并transpose_matrix = np.transpose(concat_matrix) # 矩阵转置dot_matrix = np.dot(transpose_matrix, concat_matrix) # (X.T X)^(-1)inv_matrix = np.linalg.inv(dot_matrix) # 求(X.T X)^(-1) 逆矩阵diag = np.diag(inv_matrix) # 获取矩阵对角线,即每个参数的方差return diagdef param_test_stat(x, Se, intercept, coef, alpha=0.05):n = len(x)k = len(x.columns)beta_array = param_var(x)beta_k = beta_array.shape[0]coef = [intercept] + list(coef)std_err = []t_Stat = []P_value = []t_intv = []coefLower = []coefupper = []for i in range(beta_k):se_belta = np.sqrt(Se**2 * beta_array[i]) # 回归系数的抽样标准误差t = coef[i] / se_belta # 用于检验回归系数的t统计量, 即检验统计量tp_value = scipy.stats.t.sf(np.abs(t), n-k-1)*2 # 用于检验回归系数的P值(P_value)t_score = scipy.stats.t.isf(alpha/2, df = n-k-1) # t临界值coef_lower = coef[i] - t_score * se_belta # 回归系数(斜率)的置信区间下限coef_upper = coef[i] + t_score * se_belta # 回归系数(斜率)的置信区间上限std_err.append(round(se_belta, 3))t_Stat.append(round(t,3))P_value.append(round(p_value,3))t_intv.append(round(t_score,3))coefLower.append(round(coef_lower,3))coefupper.append(round(coef_upper,3))dict_ = {"coefficients":list(map(lambda x:round(x, 4), coef)), 'std_err':std_err, 't_Stat':t_Stat, 'P_value':P_value, 't临界值':t_intv, 'Lower_95%':coefLower, 'Upper_95%':coefupper}index = ["intercept"] + list(x.columns)stat = pd.DataFrame(dict_, index=index)return stat
# 自定义函数(计算输出各回归分析统计量)
def get_lr_stats(x, y_true, y_pred, coef, intercept, alpha=0.05):n = len(x)k = len(x.columns)ssr = sum((y_pred - np.mean(y_true))**2)[0] # 回归平方和 SSRsse = sum((y_true - y_pred)**2)[0] # 残差平方和 SSEsst = ssr + sse # 总平方和 SSTmsr = ssr / k # 均方回归 MSRmse = sse / (n-k-1) # 均方残差 MSER_square = ssr / sst # 判定系数R^2Adjusted_R_square = 1-(1-R_square)*((n-1) / (n-k-1)) # 调整的判定系数Multiple_R = np.sqrt(R_square) # 复相关系数 Se = np.sqrt(sse/(n - k - 1)) # 估计标准误差loglike = log_like(y_true, y_pred)[0]AIC = 2*(k+1) - 2 * loglike # (k+1) 代表k个回归参数或系数和1个截距参数BIC = -2*loglike + (k+1)*np.log(n) # 线性关系的显著性检验F = (ssr / k) / (sse / ( n - k - 1 )) # 检验统计量F (线性关系的检验)pf = scipy.stats.f.sf(F, k, n-k-1) # 用于检验的显著性F,即Significance FFa = scipy.stats.f.isf(alpha, dfn=k, dfd=n-k-1) # F临界值# 回归系数的显著性检验stat = param_test_stat(x, Se, intercept, coef, alpha=alpha)# 输出各回归分析统计量print('='*80)print('df_Model:{} df_Residuals:{}'.format(k, n-k-1), '\n')print('loglike:{} AIC:{} BIC:{}'.format(round(loglike,3), round(AIC,1), round(BIC,1)), '\n')print('SST:{} SSR:{} SSE:{} MSR:{} MSE:{} Se:{}'.format(round(sst,4),round(ssr,4),round(sse,4),round(msr,4),round(mse,4),round(Se,4)), '\n')print('Multiple_R:{} R_square:{} Adjusted_R_square:{}'.format(round(Multiple_R,4),round(R_square,4),round(Adjusted_R_square,4)), '\n')print('F:{} pf:{} Fa:{}'.format(round(F,4), pf, round(Fa,4)))print('='*80)print(stat)print('='*80)return 0
输出结果如下:
对比statsmodels下ols结果:
参考资料:
【1】https://www.zhihu.com/question/328568463
【2】https://blog.csdn.net/qq_38998213/article/details/83480147