回车和换行的区别

article/2025/9/21 5:02:38

回车和换行的区别

  • 回车和换行的概念
  • 不同的系统间传递文件会涉及格式的转换
    • Unix -> Windows
    • Unix <- Windows

回车和换行的概念

首先介绍一下“回车”(carriage return,’\r’)和“换行”(line feed,’\n’)这两个概念的来历和区别。在计算机还没有出现之前,有一种叫做电传打字机(Teletype Model 33)的玩意,每秒钟可以打10个字符。但是它有一个问题,就是打完一行换行的时候,要用去0.2秒,正好可以打两个字符。要是在这0.2秒里面,又有新的字符传过来,那么这个字符将丢失。于是,研制人员想了个办法解决这个问题,就是在每行后面加两个表示结束的字符。一个叫做“回车”,告诉打字机把打印头定位在左边界;另一个叫做“换行”,告诉打字机把纸向下移一行。这就是“换行”和“回车”的来历,从它们的英语名字上也可以看出一二。

符号ASCII码意义
\n10换行NL
\r13回车CR

后来,计算机发明了,这两个概念也就被般到了计算机上。那时,存储器很贵,一些科学家认为在每行结尾加两个字符太浪费了,加一个就可以。于是,就出现了分歧:

  • Unix 系统里,每行结尾只有“<换行>”,即“\n”;
  • Windows系统里面,每行结尾是“<回车><换行>”,即“\r\n”;
  • Mac系统里,每行结尾是“<回车>”,即“\r”。

一个直接后果是,Unix/Mac系统下的文件在Windows里打开的话,所有文字会变成一行;而Windows里的文件在Unix/Mac下打开的话,在每行的结尾可能会多出一个^M符号。一些常见的转义字符如下图:
在这里插入图片描述
需要注意的是:在Windows系统中回车键被当做\r\n 的组合来使用,当我们从键盘输入回车键时,Windows系统会把回车键当做\r\n 来处理,Unix系统只会当做\n 来处理,不管在什么系统中,都可以用\n来作为一行输入结束的标记,只是在编程时我们需要注意,在Windows系统中我们会读到\r 这个字符,我们必须把\r和正常输入的字符区别开来。

Windows与Unix文件格式是不同的,问题一般就是出在\r\n问题上。回车(CR)和换行(LF)符都是用来表示“下一行”的。而标准没有规定要使用哪一个。于是产生了三种不同的用法:

  • windows采用回车+换行(CR+LG)表示下一行(亦即所谓的PC格式)
  • UNIX采用换行符(LF)表示下一行
  • MAC机采用回车符(CR)表示下一行

不同的系统间传递文件会涉及格式的转换

当在不同的系统间传递文件,就要涉及格式的转换。两种文件格式之间的转化:

Unix -> Windows

1、Unix -> Windows:‘\n’ -> ‘\r\n’

while ( (ch = fgetc(in)) != EOF )
{if ( ch == '\n' )putchar('\r');putchar(ch);
}

只要在Unix文件中出现的’\n’的之前加入一个’\r’字符就可以了

Unix <- Windows

2、Unix <- Windows:‘\n’ <- ‘\r\n’
从Windows到Unix的情况复杂点,不能只是把从文件中读出的’\r’去掉就可以了。因为Windows文件中的文本行的末尾有时会内嵌一个回车符号,这种情况在击打式打印机中出现。所以在转换前要判断’\r’是否和’\n’同时出现。如果同时出现,则去掉’\r’,如果没有同时出现,保留’\n’。

cr_flag = 0;    /* No CR encountered yet */while ( (ch = fgetc(in)) != EOF )
{if ( cr_flag && ch != '\n' ) {/* This CR did not preceed LF */putchar('\r');}if ( !(cr_flag = (ch == '\r')) )putchar(ch);
}

http://chatgpt.dhexx.cn/article/3ioBE1hG.shtml

相关文章

在数组中查找指定元素 (15分)

int search( int list[], int n, int x ){int index -1;for(int i0;i<n;i){if(list[i] x){index i;break;}}return index; }

[PTA]习题8-2 在数组中查找指定元素

Spring-_-Bear 的 CSDN 博客导航 本题要求实现一个在数组中查找指定元素的简单函数。 函数接口定义&#xff1a; int search( int list[], int n, int x );其中 list[] 是用户传入的数组&#xff1b;n&#xff08;≥0&#xff09;是 list[] 中元素的个数&#xff1b;x 是待查…

[PTA]实验8-1-5 在数组中查找指定元素

Spring-_-Bear 的 CSDN 博客导航 本题要求实现一个在数组中查找指定元素的简单函数。 函数接口定义&#xff1a; int search( int list[], int n, int x );其中 list[] 是用户传入的数组&#xff1b;n&#xff08;≥ 0&#xff09;是 list[] 中元素的个数&#xff1b;x 是待…

习题8-2 在数组中查找指定元素

习题8-2 在数组中查找指定元素 (15 分) 本题要求实现一个在数组中查找指定元素的简单函数。 函数接口定义&#xff1a; int search( int list[], int n, int x );其中list[]是用户传入的数组&#xff1b;n&#xff08;≥0&#xff09;是list[]中元素的个数&#xff1b;x是待…

C语言刷题系列——9.在数组中查找指定元素

&#x1f6a9;实现一个在数组中查找指定元素的简单函数 &#x1f506;一) 题目要求&#x1f506;二) 题解 &#x1f506;一) 题目要求 函数接口定义&#xff1a;int search( int list[], int n, int x );其中list[]是用户传入的数组&#xff1b;n&#xff08;≥0&#xff09;是…

逻辑回归L1和L2正则化

正则化 正则化是用来防止模型过拟合的过程&#xff0c;常用的有L1正则化和L2正则化两种选项&#xff0c;分别通过在损失函数后加上参数向 量 的L1范式和L2范式的倍数来实现。这个增加的范式&#xff0c;被称为“正则项”&#xff0c;也被称为"惩罚项"。损失函数改变&…

【机器学习】L1正则化和L2正则化

L1正则化和L2正则化 在机器学习实践过程中&#xff0c;训练模型的时候往往会出现过拟合现象&#xff0c;为了减小或者避免在训练中出现过拟合现象&#xff0c;通常在原始的损失函数之后附加上正则项&#xff0c;通常使用的正则项有两种&#xff1a;L1正则化和L2正则化。L1正则…

什么是L1和L2正则化,以及它们有什么区别

一、L1和L2正则化是什么&#xff1f; 在防止过拟合的方法中有L1正则化和L2正则化&#xff0c;L1和L2是正则化项&#xff0c;又叫做惩罚项&#xff0c;是为了限制模型的参数&#xff0c;防止模型过拟合而加在损失函数后面的一项。 在二维的情况下&#xff0c;黄色的部分是L2和…

L2正则化方法

背景 在机器学习中&#xff0c;无论是分类还是回归&#xff0c;都可能存在由于特征过多而导致的过拟合问题。当然解决的办法有 &#xff08;1&#xff09;减少特征&#xff0c;留取最重要的特征。 &#xff08;2&#xff09;惩罚不重要的特征的权重&#xff0c;即降低不重要…

对L1正则化和L2正则化的理解

一、 奥卡姆剃刀(Occams razor)原理&#xff1a; 在所有可能选择的模型中&#xff0c;我们应选择能够很好的解释数据&#xff0c;并且十分简单的模型。从贝叶斯的角度来看&#xff0c;正则项对应于模型的先验概率。可以假设复杂模型有较小的先验概率&#xff0c;简单模型有较大…

L1、L2正则化的原理及适用场景

1. L1正则化&#xff0c;也称Lasso回归 1.1 含义 权值向量 中各元素的绝对值之和&#xff0c;一般记作 。 1.2 公式表示 添加了L1正则化的损失函数一般可表示为&#xff1a; 1.3 作用 L1正则常被用来解决过拟合问题&#xff1b; L1正则化容易产生稀疏权值矩阵&#x…

机器学习中L1正则化和L2正则化

深度学习中的归一化(normalization)和正则化(regularization)_qq_26697045的博客-CSDN博客_权重归一化 1.L1和L2的区别 在机器学习中&#xff1a; - L1 regularization 是指向量中各个元素绝对值之和&#xff0c;通常表述为,线性回归中使用L1正则的模型也叫Lasso regularizati…

每天五分钟机器学习:L1正则化和L2正则化有什么区别?

本文重点 正则化包含L1正则化和L2正则化,本文将介绍一下这两个正则化有什么不同? 正则化 L1正则化 L1正则化目的是减少参数的绝对值总和,定义为: L2正则化 L2正则化的目的是减少参数平方的总和,定义为: 二者的区别? 1、L1正则化会使得某一维的权重为0,产生稀疏权…

L1、L2正则化总结

为什么不用L0范数而用L1范数? L0范数是向量中非0元素的个数&#xff0c;若使用L0范数来规则化一个参数矩阵&#xff0c;就是希望其稀疏&#xff0c;大部分元素都是0。但L0范数难以优化求解&#xff0c;L1范数是L0范数的最优凸近似&#xff0c;且比L0范数更易优化求解。 L1和…

L1正则化 L2正则化的Python 实现

上一篇文档 https://blog.csdn.net/xingzhe2001/article/details/86316712 介绍了L1 L2正则化 本文介绍L1, L2 正则化的实现 L1正则化 代码 def L1Norm(l, theta):return np.dot(np.abs(theta), np.ones(theta.size)) * ldef L1NormPartial(l, theta):return np.sign(theta…

一文了解L1正则化与L2正则化

正则化的目的&#xff1f; 欠拟合从字面意思来看就是欠缺拟合程度&#xff0c;这一般在复杂度很低的模型中出现。从数学上来看&#xff0c;一元一次函数为一条直线、一元二次函数为一个曲线&#xff0c;以此类推。那么参数越多&#xff0c;其越能拟合更复杂的特征&#xff0c;…

【学习笔记】深刻理解L1和L2正则化

深刻理解L1和L2正则化 学习视频&#xff1a;BV1Z44y147xA、BV1gf4y1c7Gg、BV1fR4y177jP up主&#xff1a;王木头学科学 L1、L2正则化即使用L1、L2范数来规范模型参数。 凡是减少泛化误差&#xff0c;而不是减少训练误差的方法&#xff0c;都可以称为正则化方法。 通俗来说&am…

L1正则化和L2正则化(从解空间角度)

文章目录 一、什么是过拟合&#xff1f;二、为什么模型会过拟合&#xff1f;三、如何防止模型过拟合&#xff1f;四、L1正则和L2正则4.1 L1、L2的区别4.2 为什么正则化能够防止过拟合&#xff1f;4.3 为什么L1正则具有稀疏性或者说L1正则能够进行特征选择&#xff1f; 最后&…

机器学习之L1正则化和L2正则化(附源码解析)

前言 今天还是机器学习的基础知识内容&#xff0c;也是最基础的哈。首先说一下什么是正则化&#xff0c;其实它就是一个减少方差的策略。那么什么是方差呢&#xff1f;在这里也引入一个和方差相辅相成的概念--偏差。 偏差度量了学习算法的期望预测与真实结果的偏离程度&#…

L2正则化(Regularization)

正则化&#xff08;Regularization&#xff09; 深度学习可能存在过拟合问题——高方差&#xff0c;有两个解决方法&#xff0c;一个是正则化&#xff0c;另一个是准备更多的数据&#xff0c;这是非常可靠的方法&#xff0c;但你可能无法时时刻刻准备足够多的训练数据或者获取…