牛顿法、梯度下降法与拟牛顿法

article/2025/8/26 14:43:08

牛顿法、梯度下降法与拟牛顿法

  • 0 引言
  • 1 关于泰勒展开式
    • 1.1 原理
    • 1.2 例子
  • 2 牛顿法
    • 2.1 x 为一维
    • 2.2 x 为多维
  • 3 梯度下降法
  • 4 拟牛顿法
    • 4.1 拟牛顿条件
    • 4.2 DFP 算法
    • 4.3 BFGS 算法
    • 4.4 L-BFGS 算法

0 引言

机器学习中在求解非线性优化问题时,常用的是梯度下降法和拟牛顿法,梯度下降法和拟牛顿法都是牛顿法的一种简化

牛顿法是在一个初始极小值点做二阶泰勒展开,然后对二阶泰勒展开式求极值点,通过迭代的方式逼近原函数极值点

在牛顿法迭代公式中,需要求二阶导数,而梯度下降法将二阶导数简化为一个固定正数方便求解

拟牛顿法也是在求解过程中做了一些简化,不用直接求二阶导数矩阵和它的逆

1 关于泰勒展开式

1.1 原理

如果我们有一个复杂函数 f ( x ) f(x) f(x), 对这个复杂函数我们想使用 n 次多项式(多项式具有好计算,易求导,且好积分等一系列的优良性质)去拟合这个函数,这时就可以对 f ( x ) f(x) f(x)进行泰勒展开,求某一点 x 0 x_0 x0附近的 n 次多项式:
在这里插入图片描述
注意:
n 次多项式只是在 x 0 x_0 x0 较小的邻域内能较好拟合 f ( x ) f(x) f(x),也就是说,泰勒展开式其实是一种局部近似的方法,只近似 x = x 0 x=x_0 x=x0那一点的函数性

1.2 例子

现在要求 f ( x ) = c o s ( x ) f(x)=cos(x) f(x)=cos(x) x 0 = 0 x_0=0 x0=0 处的二阶泰勒展开,因为我们去掉了高阶项,所以只是近似

直接套用公式
f ( x 0 ) = f ( 0 ) = c o s ( 0 ) = 1 f(x_0)=f(0)=cos(0)=1 f(x0)=f(0)=cos(0)=1
f ′ ( x 0 ) = f ′ ( 0 ) = − s i n ( 0 ) = 0 f'(x_0)=f'(0)=-sin(0)=0 f(x0)=f(0)=sin(0)=0
f ′ ′ ( x 0 ) = f ′ ′ ( 0 ) = − c o s ( 0 ) = − 1 f''(x_0)=f''(0)=-cos(0)=-1 f′′(x0)=f′′(0)=cos(0)=1
所以展开后的公式为
f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ∗ x + f ′ ′ ( x 0 ) ∗ x 2 / 2 = 1 − 0.5 ∗ x 2 f(x)≈f(x_0)+f'(x_0)*x+f''(x_0)*x^2/2=1-0.5*x^2 f(x)f(x0)+f(x0)x+f′′(x0)x2/2=10.5x2
在这里插入图片描述
从下方运行程序可以看出,离展开点越近的点,拟合程度越高,越远的点,越离谱
在这里插入图片描述

2 牛顿法

2.1 x 为一维

现在假设我们有目标函数 f ( x ) f(x) f(x),我们希望求此函数的极小值,牛顿法的基本思想是:随机找到一个点设为当前极值点 x k x_k xk,在这个点对 f ( x ) f(x) f(x) 做二次泰勒展开,进而找到极小点的下一个估计值。在 x k x_k xk 附近的二阶泰勒展开为:
在这里插入图片描述
现在想求 φ ( x ) \varphi(x) φ(x) 的极值点,由极值的必要条件可知, φ ( x ) \varphi(x) φ(x) 应满足导数为 0,即:
φ ′ ( x ) = 0 \varphi'(x)=0 φ(x)=0

φ ′ ( x ) = f ′ ( x k ) + f ′ ′ ( x k ) ( x − x k ) = 0 \varphi'(x)=f'(x_k)+f''(x_k)(x-x_k)=0 φ(x)=f(xk)+f′′(xk)(xxk)=0
这样就可以求得 x 的值
x = x k − f ′ ( x k ) f ′ ′ ( x k ) x=x_k-\frac{f'(x_k)}{f''(x_k)} x=xkf′′(xk)f(xk)
于是给定初始值 x 0 x_0 x0,就可以通过迭代的方式逼近 f ( x ) f(x) f(x)的极值点:
x k + 1 = x k − f ′ ( x k ) f ′ ′ ( x k ) x_{k+1}=x_k-\frac{f'(x_k)}{f''(x_k)} xk+1=xkf′′(xk)f(xk)

如下图,首先在 x n x_n xn 处泰勒展开,得到 f ( x ) f(x) f(x) 的近似函数 g n ( x ) g_n(x) gn(x) ,求得 g n ( x ) g_n(x) gn(x) 的极值点 x n + 1 x_{n+1} xn+1

随后在 x n + 1 x_{n+1} xn+1 出泰勒展开,得到 g n + 1 ( x ) g_{n+1}(x) gn+1(x) 函数,继续求 g n + 1 ( x ) g_{n+1}(x) gn+1(x) 的极值点

一直迭代最后就会逼近 f ( x ) f(x) f(x) 的极值点
在这里插入图片描述

2.2 x 为多维

上面讨论的是参数 x 为一维的情况,当 x 有多维时,二阶泰勒展开式可以做推广,此时:
φ ( x ) = f ( x k ) + ∇ f ( x k ) ∗ ( x − x k ) + 1 2 ∗ ( x − x k ) T ∗ ∇ 2 f ( x k ) ∗ ( x − x k ) \varphi(x)=f(x_k)+\nabla{f(x_k)}*(x-x_k)+ \frac{1}{2}*(x-x_k)^T*\nabla^2{f(x_k)}*(x-x_k) φ(x)=f(xk)+f(xk)(xxk)+21(xxk)T2f(xk)(xxk)
其中 ∇ f \nabla{f} f f f f 的梯度向量, ∇ 2 f \nabla^2{f} 2f f f f的海森矩阵(Hessian matrix),其定义为:
在这里插入图片描述
φ ( x ) \varphi(x) φ(x)对 x 向量求导并令其为 0 有:
∇ f ( x k ) + ∇ 2 f ( x k ) ∗ ( x − x k ) = 0 \nabla{f(x_k)}+\nabla^2{f(x_k)}*(x-x_k)=0 f(xk)+2f(xk)(xxk)=0
于是有:
x = x k − [ ∇ 2 f ( x k ) ] − 1 ∇ f ( x k ) x=x_k-[\nabla^2{f(x_k)}]^{-1}\nabla{f(x_k)} x=xk[2f(xk)]1f(xk)
通过迭代的方式能找到函数的极值点
牛顿法缺点:

  • 函数必须具有一二阶偏导数,海森矩阵必须正定
  • 计算相当复杂,除梯度外还需要计算二阶偏导数和逆矩阵

3 梯度下降法

在一维牛顿法中,迭代公式为:
x k + 1 = x k − f ′ ( x k ) f ′ ′ ( x k ) x_{k+1}=x_k-\frac{f'(x_k)}{f''(x_k)} xk+1=xkf′′(xk)f(xk)
这个公式缺点:

  • 需要求二阶导数,有些函数求二阶导数之后就相当复杂了;
  • 因为 f ′ ′ ( x n ) f''(x_n) f′′(xn)的大小不定,所以 g ( x ) g(x) g(x)开口方向不定,我们无法确定最后得到的结果究竟是极大值还是极小值

为了解决这两个问题,我们放弃二阶精度,即去掉 f ′ ′ ( x n ) f''(x_n) f′′(xn),改为一个固定的正数1/h:
φ ( x ) = f ( x k ) + f ′ ( x k ) ( x − x k ) + 1 2 h ( x − x k ) 2 \varphi(x)=f(x_k)+f'(x_k)(x-x_k)+\frac{1}{2h}(x-x_k)^2 φ(x)=f(xk)+f(xk)(xxk)+2h1(xxk)2
该抛物线是一条开口向上的抛物线,通过求它的极值可以保证得到的是极小值。 φ ( x ) \varphi(x) φ(x) 的极小值点为
x k − h f ′ ( x k ) x_k-hf'(x_k) xkhf(xk)
迭代公式为
x k + 1 = x k − h f ′ ( x k ) x_{k+1} = x_k-hf'(x_k) xk+1=xkhf(xk)
对于高维空间就是
x k + 1 = x k − h ∇ ( x k ) x_{k+1} = x_k-h\nabla(x_k) xk+1=xkh(xk)

4 拟牛顿法

拟牛顿法的基本思想是:不用二阶偏导数而构造出可以近似海森矩阵的正定对称阵,在“拟牛顿”的条件下优化目标函数。不同的构造方法就产生了不同的拟牛顿法。

一些记号:
∇ f \nabla{f} f 记为 g 表示梯度, g k g_k gk表示 ∇ f ( x k ) \nabla{f(x_k)} f(xk)

∇ 2 f \nabla^2{f} 2f 海森矩阵,记为 H, K k K_k Kk表示 ∇ 2 f ( x k ) \nabla^2{f(x_k)} 2f(xk)

用 B 表示对海森矩阵 H 本身的近似,D表示对海森矩阵的逆 H − 1 H^{-1} H1的近似, 即 B ≈ H , D ≈ H − 1 B≈H, D≈H^{-1} BH,DH1

4.1 拟牛顿条件

在经过 k+1 次迭代后得到 x k + 1 x_{k+1} xk+1,此时目标函数 f ( x ) f(x) f(x) x k + 1 x_{k+1} xk+1处作泰勒二阶展开,得到:
f ( x ) ≈ f ( x k + 1 ) + ∇ f ( x k + 1 ) ∗ ( x − x k + 1 ) + 1 2 ∗ ( x − x k + 1 ) T ∗ ∇ 2 f ( x k + 1 ) ∗ ( x − x k + 1 ) f(x)≈f(x_{k+1})+\nabla{f(x_{k+1})}*(x-x_{k+1})+ \frac{1}{2}*(x-x_{k+1})^T*\nabla^2{f(x_{k+1})}*(x-x_{k+1}) f(x)f(xk+1)+f(xk+1)(xxk+1)+21(xxk+1)T2f(xk+1)(xxk+1)

两边对 x 求梯度有:
∇ f ( x ) ≈ ∇ f ( x k + 1 ) + H k + 1 ∗ ( x − x k + 1 ) (1) \nabla{f(x)} ≈ \nabla{f(x_{k+1})}+H_{k+1}*(x-x_{k+1}) \tag{1} f(x)f(xk+1)+Hk+1(xxk+1)(1)
在式(1)中取 x = x k x=x_k x=xk ,整理可得:
g k + 1 − g k ≈ H k + 1 ∗ ( x k + 1 − x k ) (2) g_{k+1}-g_{k}≈H_{k+1}*(x_{k+1}-x_k)\tag{2} gk+1gkHk+1(xk+1xk(2)
引入记号:
s k = x k + 1 − x k , y k = g k + 1 − g k s_k=x_{k+1}-x_k,y_k=g_{k+1}-g_{k} sk=xk+1xk,yk=gk+1gk
式 (2) 可以写为:
y k ≈ H k + 1 ∗ s k = > 简记为: y k ≈ B k + 1 ∗ s k y_k≈H_{k+1}*s_k =>简记为:y_k≈B_{k+1}*s_k ykHk+1sk=>简记为:ykBk+1sk
或者
s k ≈ H k + 1 − 1 ∗ g k = > 简记为: s k ≈ D k + 1 ∗ y k s_k≈H^{-1}_{k+1}*g_k=>简记为:s_k≈D_{k+1}*y_k skHk+11gk=>简记为:skDk+1yk
这就是所谓的拟牛顿条件,它对迭代过程中的海森矩阵做约束。

4.2 DFP 算法

参考:牛顿法与拟牛顿法学习笔记(三)DFP 算法

4.3 BFGS 算法

参考:牛顿法与拟牛顿法学习笔记(四)BFGS 算法

4.4 L-BFGS 算法

牛顿法与拟牛顿法学习笔记(五)L-BFGS 算法
参考:
泰勒展开式的理解
牛顿法与拟牛顿法学习笔记(一)牛顿法
梯度下降和EM算法:系出同源,一脉相承
Markdown公式、特殊字符、上下标、求和/积分、分式/根式、字体


http://chatgpt.dhexx.cn/article/22QqNREc.shtml

相关文章

牛顿法(Newton‘s method)和拟牛顿法(quasi Newton method)

简述 在看伊恩古德费洛的深度学习,4.3节基于梯度的优化方法时提到 仅使用梯度信息的优化算法称为 一阶优化算法 ,如梯度下降。 使用Hessian矩阵的优化算法称为 二阶最优化算法 ,如牛顿法。 牛顿法和拟牛顿法时求解无约束最优化问题的常用方法…

最优化六:牛顿法(牛顿法、拟牛顿法、阻尼牛顿法)

牛顿法将目标函数近似为二阶函数,沿着牛顿方向进行优化(包含了Hession矩阵与负梯度信息)。 阻尼牛顿法在更新参数之前进行了一维搜索确定步长,确保沿着下降的方向优化。 拟牛顿法用常数矩阵近似替代Hession矩阵或Hession矩阵的逆…

quasi-Newton method 拟牛顿法

拟牛顿法是对牛顿法的改进,在看这一块内容以前,我们先来了解一下什么是 牛顿法。 拟牛顿法是求解非线性优化问题最有效的方法之一。 拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hess…

牛顿法与拟牛顿法

牛顿法 求函数的根 牛顿法的最初提出是用来求解方程的根的。我们假设点 x∗ 为函数 f(x) 的根,那么有 f(x∗)0 。现在我们把函数 f(x) 在点 xk 处一阶泰勒展开有: f(x)f(xk)f′(xk)(x−xk) 那么假设点 xk1 为该方程的根,则有 f(xk1)f(xk)f′…

最优化方法总结——梯度下降法、最速下降法、牛顿法、高斯牛顿法、LM法、拟牛顿法

目录 1 最优化方法的结构 2 常用最优化方法对比分析 3 相关计算公式 1 最优化方法的结构 最优化问题的一般形式为: 其中为决策变量,是目标函数,为约束集或可行域。特别地,如果,则最优化问题成为无约束最优化问题。 …

牛顿法与拟牛顿法学习笔记(二)拟牛顿条件

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS。为了解这个算法的数学机理&#xff0c…

牛顿法与拟牛顿法学习笔记(一)牛顿法

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS。为了解这个算法的数学机理&#xff0c…

最优化学习 拟牛顿法(Quasi-Newton Method)

拟牛顿法(Quasi-Newton Method) 拟牛顿法(Quasi-Newton Method)得到矩阵 B k 1 B_{k1} Bk1​获取 B k 1 B_{k1} Bk1​和 H k 1 H_{k1} Hk1​DFP方法(Davidon-Fletche Powell)BFGS方法(Broyden-Fletcher-Goldfarb-Shannon)Broyd…

牛顿法与拟牛顿法(含代码实现)

1. 牛顿法 牛顿法(英语:Newton’s method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。 牛顿法的基本思想是使用函数 f ( x ) {\dis…

拟牛顿法(DFP、BFGS、L-BFGS)

拟牛顿法 一、牛顿法 1.1 基本介绍 牛顿法属于利用一阶和二阶导数的无约束目标最优化方法。基本思想是,在每一次迭代中,以牛顿方向为搜索方向进行更新。牛顿法对目标的可导性更严格,要求二阶可导,有Hesse矩阵求逆的计算复杂的缺…

Quasi-Newton拟牛顿法(共轭方向法)

Quasi-Newton拟牛顿法(共轭方向法) 1. Introduction2. 牛顿法2.1 不能保证收敛2.2 Hessian计算复杂3. 共轭方向法3.1 共轭方向3.2 共轭方向上可以收敛到极小3.3 共轭梯度法得到的是Q上的共轭方向3.4 算法效果4. 拟牛顿法4.1 拟牛顿法构造的是Q的共轭方向4.2 确定Hk - 秩1修正…

BFGS算法

今天,我来讲一种在机器学习中常用到的优化算法,叫做BFGS算法。BFGS算法被认为是数值效果最好的拟牛顿 法,并且具有全局收敛性和超线性收敛速度。那么接下来将会详细讲解。 Contents 1. 什么是拟牛顿法 2. 拟牛顿法原理 3. DFP算法原理 4. BF…

拟牛顿法及其matlab实现

目录 一.前言 二.拟牛顿法的基本思想 三.秩1矫正Hk公式 四.算法步骤 五.代码实现 1.秩1矫正算法 2.目标函数 3.目标函数梯度 4.主函数 六.仿真结果与分析 一.前言 上上上篇文章介绍了牛顿法和修正牛顿法。想看的话可以往后翻。牛顿法有二阶的收敛速度,但He…

InnoDB数据库死锁

目录 场景描述问题分析解决方法延伸:数据库死锁数据库死锁例子 正文 回到顶部 场景描述 在update表的时候出现DeadlockLoserDataAccessException异常 (Deadlock found when trying to get lock; try restarting transaction...)。 回到顶部 问题分析 这个异常并不会…

mysql数据库死锁原因分析

一、死锁模拟复现 1、当前自己电脑的mysql版本8.0.22 2、数据库的隔离级别--可重复读(默认隔离级别) 3、自动提交关闭 4、表结构,age为非唯一索引,对下面整个案例非常重要 5、 1、事务A执行更新操作,更新成功 2、事务…

处理数据库死锁问题

在实际的项目环境中碰到了如下的问题 Microsoft.Data.SqlClient.SqlException (0x80131904): 事务(进程 ID 98)与另一个进程被死锁在 锁 资源上,并且已被选作死锁牺牲品。请重新运行该事务。 怀疑是因为数据库查询和修改中产生的死锁问题,造成的上述原因…

数据库死锁:原因和解决办法

理解数据库中的死锁 在数据库的上下文中,死锁是指两个或多个事务无法进行的情况,因为每个事务都在等待另一个事务释放资源。这可以类比为事务的循环链,每个事务都在等待链中的下一个事务释放资源。以下是一个死锁场景的视觉表示:…

Java面试必问:死锁(多线程死锁+数据库死锁)

死锁 接下来从几个方面介绍: 多线程死锁多线程死锁解决办法数据库死锁数据库死锁解决办法 多线程死锁是怎么造成的? 多线程锁定同一资源会造成死锁线程池中的任务使用当前线程池也可能出现死锁 参考连接: https://blog.csdn.net/qq_3506…

MySQL数据库死锁了,该怎么办?一文全解最新教程

文章目录 正文死锁的发生为什么会产生死锁?Insert 语句是怎么加行级锁的?1、记录之间加有间隙锁2、遇到唯一键冲突 如何避免死锁? 之前分享过 MySQL 死锁的文章,然后很多读者对「插入意向锁」认识很迷糊。 大家误以为「插入意向锁…

5 分钟理解数据库死锁

图片来源:网络 文章目录 死锁是如何产生的?如何解决并避免死锁总结 🍺知人者智,自知者明。胜人者有力,胜己者强。知足者富,强行者有志。不失其所者久,死而不亡者寿。——老子 大家好&#xff01…