BP神经网络中初始权值和阈值的设定
1、首先需要了解BP神经网络是一种多层前馈网络。2、以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。
3、在matlab中命令行窗口中定义输入P,输出T,·通过“newff(minmax(P),[5,1]构建BP神经网络,“[net,tr]=train(net,P,T);”进行网络训练,“sim(net,P)”得到仿真预测值。
4、在命令行窗口按回车键之后,可以看到出现结果弹窗,最上面的Neural Network下面依次代表的是“输入、隐含层、输出层、输出”,隐含层中有5个神经元。
5、Progress下面的Epoch代表迭代次数,Gradient代表梯度,Vaildation Checks代表有效性检查,最后的绿色对勾代表性能目标达成。
6、最后将实际曲线和预测曲线绘制出来,可以看到使用BP神经网络预测的结果曲线基本和实际输出曲线一致。
谷歌人工智能写作项目:神经网络伪原创
BP神经网络的阀值调节怎么弄的?
BP神经网络中初始权值和阈值的设定
1、首先需要了解BP神经网络是一种多层前馈网络。2、以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。
3、在matlab中命令行窗口中定义输入P,输出T,·通过“newff(minmax(P),[5,1]构建BP神经网络,“[net,tr]=train(net,P,T);”进行网络训练,“sim(net,P)”得到仿真预测值。
4、在命令行窗口按回车键之后,可以看到出现结果弹窗,最上面的Neural Network下面依次代表的是“输入、隐含层、输出层、输出”,隐含层中有5个神经元。
5、Progress下面的Epoch代表迭代次数,Gradient代表梯度,Vaildation Checks代表有效性检查,最后的绿色对勾代表性能目标达成。
6、最后将实际曲线和预测曲线绘制出来,可以看到使用BP神经网络预测的结果曲线基本和实际输出曲线一致。
神经网络算法中,参数的设置或者调整,有什么方法可以采用
若果对你有帮助,请点赞。 神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。
现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。
然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,而在matlab神经网络工具箱里的lr,代表的是初始学习率。
因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:if newE2/E2 > maxE_inc %若果误差上升大于阈值lr = lr * lr_dec; %则降低学习率elseif newE2 < E2 %若果误差减少lr = lr * lr_inc;%则增加学习率end详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码若果对你有帮助,请点赞。
祝学习愉快。
神经网络中阈值和权值的初值怎么调整?为什么我的老是误差特别大呢?
神经网络BP算法中,如何选择网络学习效率及阈值调整效率
神经网络阈值加还是减
matlab 实现BP神经网络 怎样根据隐含层和输入层的权值阈值得到输入到输出的计算公式