动态规划设计方法详解最长递增子序列

article/2025/9/21 0:22:26

很多读者反应,就算看了前文动态规划详解,了解了动态规划的套路,也不会写状态转移方程,没有思路,怎么办?本文就借助「最长递增子序列」来讲一种设计动态规划的通用技巧:数学归纳思想。

最长递增子序列(Longest Increasing Subsequence,简写 LIS)是比较经典的一个问题,比较容易想到的是动态规划解法,时间复杂度 O(N^2),我们借这个问题来由浅入深讲解如何写动态规划。比较难想到的是利用二分查找,时间复杂度是 O(NlogN),我们通过一种简单的纸牌游戏来辅助理解这种巧妙的解法。

先看一下题目,很容易理解:

title

注意「子序列」和「子串」这两个名词的区别,子串一定是连续的,而子序列不一定是连续的。下面先来一步一步设计动态规划算法解决这个问题。

一、动态规划解法

动态规划的核心设计思想是数学归纳法。

相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在 k &lt; n k&lt;n k<n 时成立,然后想办法证明 k = n k=n k=n 的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于 k 等于任何数都成立。

类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设 d p [ 0... i − 1 ] dp[0...i-1] dp[0...i1] 都已经被算出来了,然后问自己:怎么通过这些结果算出 dp[i]?

直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即 dp[i] 的值到底代表着什么?

我们的定义是这样的:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度。

举两个例子:

1

2

算法演进的过程是这样的,:

gif1

根据这个定义,我们的最终结果(子序列的最大长度)应该是 dp 数组中的最大值。

int res = 0;
for (int i = 0; i < dp.size(); i++) {res = Math.max(res, dp[i]);
}
return res;

读者也许会问,刚才这个过程中每个 dp[i] 的结果是我们肉眼看出来的,我们应该怎么设计算法逻辑来正确计算每个 dp[i] 呢?

这就是动态规划的重头戏了,要思考如何进行状态转移,这里就可以使用数学归纳的思想:

我们已经知道了 d p [ 0...4 ] dp[0...4] dp[0...4] 的所有结果,我们如何通过这些已知结果推出 d p [ 5 ] dp[5] dp[5] 呢?

3

根据刚才我们对 dp 数组的定义,现在想求 dp[5] 的值,也就是想求以 nums[5] 为结尾的最长递增子序列。

nums[5] = 3,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到最后,就可以形成一个新的递增子序列,而且这个新的子序列长度加一。

当然,可能形成很多种新的子序列,但是我们只要最长的,把最长子序列的长度作为 dp[5] 的值即可。

[外链图片转存失败(img-WMNJTTTG-1564364146645)(https://raw.githubusercontent.com/fudonglai/pictures/master/%E6%9C%80%E9%95%BF%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97/gif2.gif)]

for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1);
}

这段代码的逻辑就可以算出 dp[5]。到这里,这道算法题我们就基本做完了。读者也许会问,我们刚才只是算了 dp[5] 呀,dp[4], dp[3] 这些怎么算呢?

类似数学归纳法,你已经可以算出 dp[5] 了,其他的就都可以算出来:

for (int i = 0; i < nums.length; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1);}
}

还有一个细节问题,dp 数组应该全部初始化为 1,因为子序列最少也要包含自己,所以长度最小为 1。下面我们看一下完整代码:

public int lengthOfLIS(int[] nums) {int[] dp = new int[nums.length];// dp 数组全都初始化为 1Arrays.fill(dp, 1);for (int i = 0; i < nums.length; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1);}}int res = 0;for (int i = 0; i < dp.length; i++) {res = Math.max(res, dp[i]);}return res;
}

至此,这道题就解决了,时间复杂度 O(N^2)。总结一下动态规划的设计流程:

首先明确 dp 数组所存数据的含义。这步很重要,如果不得当或者不够清晰,会阻碍之后的步骤。

然后根据 dp 数组的定义,运用数学归纳法的思想,假设 d p [ 0... i − 1 ] dp[0...i-1] dp[0...i1] 都已知,想办法求出 d p [ i ] dp[i] dp[i],一旦这一步完成,整个题目基本就解决了。

但如果无法完成这一步,很可能就是 dp 数组的定义不够恰当,需要重新定义 dp 数组的含义;或者可能是 dp 数组存储的信息还不够,不足以推出下一步的答案,需要把 dp 数组扩大成二维数组甚至三维数组。

最后想一想问题的 base case 是什么,以此来初始化 dp 数组,以保证算法正确运行。

二、二分查找解法

这个解法的时间复杂度会将为 O(NlogN),但是说实话,正常人基本想不到这种解法(也许玩过某些纸牌游戏的人可以想出来)。所以如果大家了解一下就好,正常情况下能够给出动态规划解法就已经很不错了。

根据题目的意思,我都很难想象这个问题竟然能和二分查找扯上关系。其实最长递增子序列和一种叫做 patience game 的纸牌游戏有关,甚至有一种排序方法就叫做 patience sorting(耐心排序)。

为了简单期间,后文跳过所有数学证明,通过一个简化的例子来理解一下思路。

首先,给你一排扑克牌,我们像遍历数组那样从左到右一张一张处理这些扑克牌,最终要把这些牌分成若干堆。

poker1

处理这些扑克牌要遵循以下规则:

只能把点数小的牌压到点数比它大的牌上。如果当前牌点数较大没有可以放置的堆,则新建一个堆,把这张牌放进去。如果当前牌有多个堆可供选择,则选择最左边的堆放置。

比如说上述的扑克牌最终会被分成这样 5 堆(我们认为 A 的值是最大的,而不是 1)。

poker2

为什么遇到多个可选择堆的时候要放到最左边的堆上呢?因为这样可以保证牌堆顶的牌有序(2, 4, 7, 8, Q),证明略。

poker3

按照上述规则执行,可以算出最长递增子序列,牌的堆数就是最长递增子序列的长度,证明略。

[外链图片转存失败(img-5JsPKAsx-1564364146650)(https://raw.githubusercontent.com/fudonglai/pictures/master/%E6%9C%80%E9%95%BF%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97/poker4.jpeg)]

我们只要把处理扑克牌的过程编程写出来即可。每次处理一张扑克牌不是要找一个合适的牌堆顶来放吗,牌堆顶的牌不是有序吗,这就能用到二分查找了:用二分查找来搜索当前牌应放置的位置。

PS:旧文二分查找算法详解详细介绍了二分查找的细节及变体,这里就完美应用上了。如果没读过强烈建议阅读。

public int lengthOfLIS(int[] nums) {int[] top = new int[nums.length];// 牌堆数初始化为 0int piles = 0;for (int i = 0; i < nums.length; i++) {// 要处理的扑克牌int poker = nums[i];/***** 搜索左侧边界的二分查找 *****/int left = 0, right = piles;while (left < right) {int mid = (left + right) / 2;if (top[mid] > poker) {right = mid;} else if (top[mid] < poker) {left = mid + 1;} else {right = mid;}}/*********************************/// 没找到合适的牌堆,新建一堆if (left == piles) piles++;// 把这张牌放到牌堆顶top[left] = poker;}// 牌堆数就是 LIS 长度return piles;
}

至此,二分查找的解法也讲解完毕。

这个解法确实很难想到。首先涉及数学证明,谁能想到按照这些规则执行,就能得到最长递增子序列呢?其次还有二分查找的运用,要是对二分查找的细节不清楚,给了思路也很难写对。

所以,这个方法作为思维拓展好了。但动态规划的设计方法应该完全理解:假设之前的答案已知,利用数学归纳的思想正确进行状态的推演转移,最终得到答案。

如果本文对你有帮助,欢迎关注我的公众号 labuladong,致力于把算法问题讲清楚~

在这里插入图片描述


http://chatgpt.dhexx.cn/article/tqloi3vV.shtml

相关文章

最长递增子序列(Longest Increasing Subsequence)

定义 最长上升子序列&#xff08;Longest Increasing Subsequence&#xff0c;LIS&#xff09;&#xff0c;在计算机科学上是指一个序列中最长的单调递增的子序列。 问题描述 给定一个长度为 N 的数组&#xff0c;找出一个最长的单调自增子序列&#xff08;不一定连续&#…

最长递增子序列问题(你真的会了吗)

目录 一.最长递增子序列问题I 二.最长递增子序列问题II 三. 最长递增子序列问题III 一.最长递增子序列问题I 1.对应牛客网链接 最长上升子序列(一)_牛客题霸_牛客网 (nowcoder.com) 2.题目描述&#xff1a; 3.解题思路 1.首先我们分析题意&#xff1a;最长递增子序列拆&#x…

UDP协议详细解析

一、基本概念 基本定义&#xff1a;UDP 是User Datagram Protocol的简称&#xff0c; 中文名是用户数据报协议&#xff0c;是OSI&#xff08;Open System Interconnection&#xff0c;开放式系统互联&#xff09; 参考模型中一种无连接的传输层协议&#xff0c;提供面向事务的…

tcp read 和 udp recvfrom

udp中写一个长度为0的数据报是可行的&#xff0c;这导致一个包含IP头部、udp头部和没有数据的IP数据报。这也意味着对于数据报协议&#xff0c;recvfrom返回0值也是可行的&#xff1a;它不表示对方已经关闭了连接&#xff0c;这与tcp套接口上read返回0值的情况不同。由于udp是无…

UDPTCP

目录 Socket 一.UDP 特点 基于UDP实现回显服务器 服务器 客户端 端口冲突 图解 二.TCP 特点 基于TCP实现回显服务器 服务器 客户端 图解 Socket Socket套接字&#xff0c;是由系统提供用于网络通讯的技术&#xff0c;是基于TCP/IP协议的网络通信的基本操作单元&#xff0c;基于…

Reliable UDP

Reliable UDP&#xff08;可靠的UDP&#xff09;是一套服务品质的增强&#xff0c;比如拥挤控制调整&#xff0c;数据重传&#xff0c;薄化服务器算法等&#xff0c;这些增强可以提高服务器在数据包丢失和网络拥挤的条件下向RTP客户表现品质良好的RTP流的能力。Reliable UDP’的…

TCP /UDP

TCP与UDP工作在传输层&#xff0c;在程序之间传数据&#xff08;视频&#xff0c;聊天&#xff0c;图片&#xff0c;网页&#xff09; TCP基于连接的&#xff0c;可靠的&#xff08;及时知对方接受/拒绝&#xff0c;是否传错&#xff09;&#xff08;文本&#xff0c;网页&…

UDP、TCP

传输层协议UDP、TCP 一、TCP/UDP的任务二、UDP1.UDP概述2.UDP报文格式3.使用UDP的应用层协议 三、TCP1.TCP概述2.TCP报文3.TCP三次握手4.四次挥手5.超时重传6.流量控制和快重传7.拥塞控制8.延迟应答、捎带应答9.粘包问题10.基于TCP的应用层协议 四、总结 一、TCP/UDP的任务 我们…

tcp udp proxy

服务目的 首先如下图所示&#xff1a; 作为一个内外网的通信&#xff0c;必须使用tcp 和 udp 的proxy 把内网和外网打通&#xff0c;比如中间是一个有两个网卡的路由器&#xff0c;打通以后&#xff0c;由proxy 发送数据到服务端&#xff0c;服务端按照上图处于外网。 服务端…

UDP-RTP协议解析

一、RTP协议 数据传输协议RTP&#xff0c;用于实时传输数据。RTP报文由两部分组成&#xff1a;报头和有效载荷 二、RTP的会话过程 当应用程序建立一个RTP会话时&#xff0c;应用程序将确定一对目的传输地址。目的传输地址由一个网络地址和一对端口组成&#xff0c;有两个端口&a…

UDP 理解

这里需要指出的一点是&#xff0c;伪首部完全是虚拟的&#xff0c;它并不会和用户数据报一起被发送出去&#xff0c;只是在校验和的计算过程中会被使用到&#xff0c;伪首部主要来自于运载UDP报文的IP数据报首部&#xff0c;将源IP地址和目的IP地址加入到校验和的计算中可以验证…

关于TCP/UDP

目录 1、TCP协议 1.1 TCP协议格式 1.2 TCP协议原理 2、UDP协议 在学习TCP/UDP之前先来了解以下整体的通信传输&#xff0c;它是一个向下封装、向上分用的过程&#xff1a; 这是TCP/IP四层模型&#xff0c;所以要想实现通讯&#xff0c;通过TCP建立和断开连接是至关重要的&a…

UDP详解

1、UDP数据包格式 UDP 是User Datagram Protocol的简称&#xff0c; 中文名是用户数据报协议&#xff0c;是OSI&#xff08;Open System Interconnection&#xff0c;开放式系统互联&#xff09; 参考模型中一种无连接的传输层协议&#xff0c;提供面向事务的简单不可靠信息传…

TCPUDP相关介绍

TCP and UDP TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff09;是面向连接的协议&#xff0c;也就是说&#xff0c;在收发数据前&#xff0c;必须和对方建立可靠的连接。 一个TCP连接必须要经过三次握手才能建立起来。断开连接需要四次挥手才…

TCPUDP

TCP&#xff1a;面向连接的服务&#xff0c;可靠的进程到进程的通信协议。&#xff08;因为TCP里面封装了端口号&#xff0c;端口号就意味着一个服务&#xff0c;进程&#xff09;&#xff1b;应用场景&#xff1a;如&#xff1a;文件传输&#xff1b;HTTP应用层协议 UDP&…

TCP/UDP

Tcp / ip : 应用层、传输层、网络层、网络接口层 查看本机ip&#xff1a; windons r &#xff08;进入交互换环境&#xff09;ipconfigping 本机ip 查看本机网络有无问题 端口&#xff1a; 知名端口(固定端口)&#xff1a;0—1023动态端口&#xff1a;程序可以设置的端口 1…

UDP协议的详细解析

UDP数据报 一、UDP的概述&#xff08;User Datagram Protocol&#xff0c;用户数据报协议&#xff09; UDP是传输层的协议&#xff0c;功能即为在IP的数据报服务之上增加了最基本的服务&#xff1a;复用和分用以及差错检测。 UDP提供不可靠服务&#xff0c;具有TCP所没有的优…

UDP协议详解

一、UDP协议概述 传输层另一个重要的协议就是用户数据报协议 UDP。UDP 只在 IP 的数据报服务之上增加了很少一点的功能&#xff0c;这就是复用和分用的功能以及差错检测的功能。 <注> UDP(User Datagram Protocol&#xff0c;用户数据报协议) UDP的主要特点是&#xff1a…

截图文字识别工具

tkinter程序源码&#xff1a;初识Python&#xff0c;如有不足请多指教。 import tkinter as tk import keyboard # 安装&#xff1a; pip install keyboard from PIL import ImageGrab # pip install pillow import time from aip import AipOcr # pip install baidu-a…

电脑截图如何快速识别文字?3分钟教会你快速截图识别怎么做

电脑截图已经成为我们日常生活中的常见操作&#xff0c;无论是工作还是学习&#xff0c;我们都有可能需要截取电脑屏幕上的某个区域进行保存或分享。但是&#xff0c;有时候我们需要识别截图中的文字内容&#xff0c;这时候该怎么办呢&#xff1f;接下来&#xff0c;本文将为大…