哈夫曼树(Huffman Tree)

article/2025/8/25 9:35:16

定义

哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。可以证明哈夫曼树的WPL是最小的。

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

实例引入

现在有这样一个经典问题:果子合并。

现在得到很多果子,需要把这些果子合并成一堆。每一次合并,可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n−1 次合并之后,就只剩下一堆了。在合并果子时总共消耗的体力等于每次合并所耗体力之和。

假定每个果子重量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使耗费的体力最少,并输出这个最小的体力耗费值。

例如有 3 种果子,数目依次为 1,2,9。可以先将 1、2 堆合并,新堆数目为 3,耗费体力为 3。

接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。所以总共耗费体力=3+12=15。可以证明 15 为最小的体力耗费值。

我们把这几个果子看成树的叶子

 

 然后通过逐次合并其中两个叶子(果子),使根节点的权值最小,根据上面的分析先合并1,2得到3,之后合并3,9得到12。其中我们要计算的便是产生的新节点的权值,把这先权值相加,即是最后要求的体力值。

进一步分析可以发现,假设初始状态下我们有四个点,是四个点之间的最优解问题,当我们合并其中两个点之后就变成了三个点的最优解问题,以此类推;而且如果保证每次选的两个数都是最小的(最优的),那么接下来都是最优解的情况了。

由于数据输入是并不是按照从小到大排列,故可以使用小根堆来做。 

 代码

#include <bits/stdc++.h>
using namespace std;
int main()
{int n;scanf("%d", &n);priority_queue<int, vector<int>, greater<int>> heap;while (n--){int x;scanf("%d", &x);heap.push(x);}int res = 0;while (heap.size() > 1){int a = heap.top();heap.pop();int b = heap.top();heap.pop();res += a + b;heap.push(a + b);}printf("%d\n", res);return 0;
}


http://chatgpt.dhexx.cn/article/t2lK5n7C.shtml

相关文章

哈夫曼树详解

一、哈夫曼树的介绍 Huffman Tree&#xff0c;中文名是哈夫曼树或霍夫曼树&#xff0c;它是最优二叉树。 定义&#xff1a;给定n个权值作为n个叶子结点&#xff0c;构造一棵二叉树&#xff0c;若树的带权路径长度达到最小&#xff0c;则这棵树被称为哈夫曼树。 这个定义里面涉…

哈夫曼树(Huffmantree)

1.基本概念 哈夫曼树又称为最优树&#xff0c;是一类带权路径长度最短的树。 一些概念的定义&#xff1a; &#xff08;1&#xff09;路径&#xff1a;树的两个结点之间的连线称为路径。 &#xff08;2&#xff09;路径长度&#xff1a;路径上的分支数目称作路径长度。若规定…

哈夫曼树详解及其应用(哈夫曼编码)

一&#xff0c;哈夫曼树的基本概念 路径&#xff1a;从树中一个结点到另一个结点之间的分支构成这两个结点间的路径 结点的路径长度&#xff1a;两结点之间路径上的分支数 树的路径长度&#xff1a;从树根到每一个结点的路径长度之和&#xff0e;记作&#xff1a;&#xff3…

哈夫曼树编码的实现+图解(含全部代码)

目录 哈夫曼树的基本概念 ------------哈夫曼树的构造方法 ------------------------哈夫曼编码 ------------------------------------全部代码 哈夫曼树的基本概念 哈夫曼树通常以二叉树的形式出现&#xff0c;所以也称最优二叉树&#xff0c;是一类带权路径长度最短的树…

哈夫曼树(C语言实现)

文章目录 哈夫曼树的基本概念哈夫曼树的构建构建思路代码实现 哈夫曼编码的生成编码生成思路代码实现 完整代码展示以及代码测试 哈夫曼树的基本概念 在认识哈夫曼树之前&#xff0c;你必须知道以下几个基本术语&#xff1a; 1、什么是路径&#xff1f; 在一棵树中&#xff0c…

打开VS2010提示:产品密钥框

打开VS2010提示&#xff1a;产品密钥框&#xff0c;如下图&#xff1a; …

VS 2017 产品密钥

个人分类&#xff1a; vs2010 Visual Studio 2017&#xff08;VS2017&#xff09; 企业版 Enterprise 注册码&#xff1a;NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Visual Studio 2017&#xff08;VS2017&#xff09; 专业版 Professional 激活码key&#xff1a;KBJFW-NXHK6-W4WJM-CRM…

vs++2010学习版的注册密钥

6VPJ7-H3CXH-HBTPT-X4T74-3YVY7 欢迎使用Markdown编辑器 你好&#xff01; 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章&#xff0c;了解一下Markdown的基本语法知识。 新的改变 我们对Markdown编辑器进行…

存储过程入门

参考文章 Oracle Database concepts guide&#xff08;11g2&#xff09; By Thomas KyteStored Procedure Wiki 先修知识 数据库的基本概念SQL 什么是存储过程&#xff08;Stored Procedure&#xff09;&#xff1a; 一段存储在数据库的“子程序”&#xff0c;下面对这两个…

【MySQL存储过程】创建一个简单的存储过程

什么是存储过程和函数 存储过程和函数是在数据库中定义的一些SQL语句的集合&#xff0c;然后直接调用这些存储过程和函数来执行已经定义好的SQL语句。存储过程和函数可以避免开发人员重复编写相同的SQL语句。而且&#xff0c;存储过程和函数是在MySQL服务器中存储和执行的&…

什么是存储过程

什么是存储过程&#xff1a;存储过程可以说是一个记录集吧&#xff0c;它是由一些T-SQL语句组成的代码块&#xff0c;这些T-SQL语句代码像一个方法一样实现一些功能&#xff08;对单表或多表的增删改查&#xff09;&#xff0c;然后再给这个代码块取一个名字&#xff0c;在用到…

MySQL-存储过程

文章目录 存储过程一. 存储过程的创建和使用1. 创建存储过程2. 删除存储过程3. 查看存储过程4. 调用存储过程5. 例题 二. 变量1. 系统变量1.1 全局变量1.2 会话变量 2. 自定义变量2.1 用户变量2.2 局部变量 三. 存储过程参数3.1 说明&#xff1a;3.2 例题 四. 流程控制1. IF语句…

存储过程怎么使用

1.什么是存储过程&#xff1f; 存储过程是封装了一条或多条SQL的集合。它的好处是简单、高性能、安全。2.为什么要使用存储过程&#xff1f; 简化复杂的操作&#xff0c;把SQL封装起来容易使用。 如果所有开发人员和应用程序都使用同一存储过程&#xff0c;则所有使用的代码都…

SQL创建存储过程

创建SQL存储过程需要使用到的语法 - 创建存储过程 CREATE 存储过程的名称(参数) BEGIN ...需要执行的SQL语句 END- 调用 CALL 存储过程的名称(参数)个人看法&#xff0c;这就是一个函数...无参数 CREATE PROCEDURE p_student_select() BEGIN SELECT * FROM student; ENDCALL …

4.3.1 存储过程的简要介绍

4.3.1 存储过程的简要介绍 1、什么是存储过程&#xff1f; 存储过程是一种命名的PL/SQL代码块。它既可以没有参数&#xff0c;也可以有若干输入、输出参数&#xff0c;甚至可以有多个既作输入又作输出的参数&#xff0c;但他通常没有返回值。 存储过程被保存在数据库中&#x…

储存过程

储存过程是一组为了完成特定功能的SQL语句表&#xff0c;经过编译后储存在数据库中&#xff0c;用户通过指定过程的名字并给定参数来调用执行它。 从常用的操作数据库的SQL语句在执行的时候需要先编译&#xff0c;然后执行&#xff0c;储存过程&#xff0c;则是采用另外一种方式…

java笔试--北京轩宇信息

第一题 import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths;/*** <p>功能: 编写程序,在C盘根目录下创建文件myFile.txt&#xff0c;文件内容如下&#xff0c;请注意缩进和换行&#xff1a;* Java* C/C* Python* JavaScripts*/ public…

笔试——中兴

参考达尔文公众号&#xff1a;https://mp.weixin.qq.com/s?__bizMzg5MDIwNjIwMA&mid2247496018&idx1&snf8109b6f5b5ea3a175e52eb7074bb7bc&chksmcfe293c5f8951ad3570a64a07ce0deba1ec12f3c8d0a15bbf1c64ed25e5faca46ef5974fef72&mpshare1&scene23&…

中兴2016笔试题答案Java_中兴Java笔试题

中兴Java笔试题 一、选择题(每题4分,共80分) 1. 编译Java Application 源程序文件将产生相应的字节码文件&#xff0c;这些字节码文件的扩展名为( ) A. .java B. .class C. .html D. . 2. main方法是Java Application程序执行的入口点&#xff0c;关于main方法的方法头以下哪项…

中兴通讯2013校招软件笔试题

关于const的实现机制&#xff0c;请看&#xff1a; http://blog.csdn.net/syzcch/article/details/8182184 define宏定义那个题&#xff1a; http://zhidao.baidu.com/link?urltSvmJ_ytFjwWKBLzDgCfLfW-mdJtTChTab3XzBAbd2x1nGYQCGnqDq__9-dqc_ndlWE1uPeaFcyVXlKOn1CAha …