EWMA 指数加权移动平均 模型

article/2025/10/26 12:48:49

Exponentially Weighted Moving Average(EWMA)指数加权移动平均是一种常用的序列数据处理方式,如下:
在时间 t, 根据实际的观测值(或量测值)我们可以求取 EWMA(t)如下:


EWMA(t ) = λY(t)+ ( 1-λ) EWMA(t-1) for t = 1, 2, ..., n.


* EWMA(t):t时刻的估计值 
* Y(t): t 时间之量测值﹐
* n is the number of observations to be monitored including EWMA0 
* λ ( 0 < λ< 1 ) ﹐表EWMA对于历史量测值之权重系数﹐其值越接近1,表对过去量测值的权重较低

从另一个角度看, λ 决定了EWM A估计器跟踪实际数据突然发生变化的能力,即时效性, 显然随着λ 增大, 估计器的时效性就越强,反之,越弱;另一方面,由于 λ 的存在,EWMA还表现出一定的吸收瞬时突发的能力,这种能力称为平稳性。显然随着 λ 减小, 估计器的平稳性增强,反之降低。


应用领域:
1. 金融和管理领域处理统计数据处理的一个常用工具
2. 在通信领域中,EWMA主要用于对网络的状态参数进行估计和平滑, 例如在TCP 拥塞控制中EWMA被 用来计算分组的往返时延( RTT ) ,在拥塞控制中的主动队列管理(AQM)技术中很多使用EWMA平滑估计拥塞指示参数( 如平均队长) 等参数

深入观察:
1. 从概率角度看,EWMA是一种理想的最大似然估计技术,它采用一个权重因子 λ 对数据进行估计,当前估计值由前一次估计值和当前的抽样值共同决定

2. 从信号处理角度看,EWMA可以看成是一个低通滤波器,通过控制 λ 值,剔除短期波动、保留长期发展趋势提供了信号的平滑形式

移动平均

移动平均,简称均线,是技术分析其中一种分析时间序列数据的工具。最常见的是利用股价、回报或交易量等变量计算出移动平均。

移动平均可抚平短期波动,将长线趋势或周期显现出来。数学上,移动平均可视为一种卷积。

简单移动平均

简单移动平均(Simple moving average, SMA)是之前n个数值的未作加权算术平均。例如,收市价的10日简单移动平均指之前10日收市价的平均数。设收市价为p1pn,则方程式为:

SMA = { p_1 + p_2 + \cdots + p_n \over n }

当计算连续的数值,一个新的数值加入,同时一个旧数值剔出,所以无需每次都重新逐个数值加起来:

SMA_{t1} = SMA_{t0} - {p_1 \over n} + {p_{n+1} \over n}

在技术分析中,有几个n的数值较为普遍,如10日、40日、200日,视乎分析时期长短而定。投资者冀从移动平均线的图表中分辨出支持位或阻力位。

加权移动平均

加权移动平均(Weighted moving average, WMA)指计算平均时个别数据乘以不同数值,在技术分析中,n日WMA的最近期一个数值乘以n、次近的乘以n-1,如此类推,一直到0:

WMA_{M} = { n p_{M} + (n-1) p_{M-1} + \cdots + 2 p_{M-n+2} + p_{M-n+1} \over n + (n-1) + \cdots + 2 + 1}
WMA,N=15

由于WMAM + 1WMAM的分子相差n p_{M+1} - p_{M} - \cdots - p_{M-n+1},假设p_{M} + p_{M-1} + \cdots + p_{M-n+1}为总和M

总和M+1 = 总和M + pM + 1 − pM − n + 1
分子M+1 = NM + 1 = 分子M + npM + 1 − 总和M
WMA_{M+1} = { N_{M+1} \over n + (n-1) + \cdots + 2 + 1}

留意分母为三角形数,方程式为 n(n+1)\over2

右图显示出加权是随日子远离而递减,直至递减至零。

指数移动平均

EMA,N=15

指数移动平均(Exponential Moving Average, EMA或EWMA)是以指数式递减加权的移动平均。各数值的加权而随时间而指数式递减,越近期的数据加权越重,但较旧的数据也给予一定的加权。右图是一例子。

加权的程度以常数α决定,α数值介乎0至1。α也可用N来代表:\alpha={2\over{N+1}},所以,N=19代表α=0.1。

设时间t的数值为Yt,而时间t的EMA则为St,计算时间t≥2是方程式为:[1]

S_{t} = \alpha \times Y_{t-1} + (1-\alpha) \times S_{t-1}

设p=昨日(t0)价格,今日(t1)EMA的方程式为:

EMA_{t1} = EMA_{t0} + \alpha \times (p - EMA_{t0})

EMAt0分拆开来如下:

EMA = { p_1 + (1-\alpha) p_2 + (1-\alpha)^2 p_3 + (1-\alpha)^3 p_4 + \cdots \over 1 + (1-\alpha) + (1-\alpha)^2 + (1-\alpha)^3 + \cdots }

理论上这是一个无穷级数,但由于1-α少于1,各项的数值会越来越细,可以被忽略。分母方面,若有足够多项,则其数值趋向 1/α。

假设k项及以后的项被忽略,即(1-\alpha)^k + (1-\alpha)^{k+1} + \cdots,重写后可得(1-\alpha)^k \times (1 + (1-\alpha) + (1-\alpha)^2 \cdots),相当于{(1-\alpha)^k \over \alpha}。所以,若要包含99.9%的加权,解方程k={ \log (0.001 \times \alpha)  \over \log (1-\alpha)}即可得出k。由于当N不断增加,\log\,(1-\alpha) 将趋向-2 \over N+1,简化后k大约等于3.45\times(N+1)


其他加权

有时计算移动平均时会加入其他变量,例如,交易量加权会加入交易量的因素。


http://chatgpt.dhexx.cn/article/qj9RhNyp.shtml

相关文章

时间序列分析 - 移动平均SMA, EMA(EWMA) 之python

pandas: pandas.DataFrame.rolling pandas.DataFrame.ewm pandas.DataFrame.mean 其中rolling可以指定窗口类型win_type,比如boxcar, boxcar, triang, blackman, hanning, bartlett 以hanning window为例&#xff0c;其窗口形状为钟型&#xff0c;曲线函数为&#xff1a; p…

线性和EWMA指数加权移动平均模型

线性和EWMA指数加权移动平均模型 模型应用场景&#xff1a; 对历史测量值赋权重&#xff0c;对现在t时刻的数值做估计。 1 移动平均 移动平均是是技术分析其中一种分析时间序列数据的工具移动平均可抚平短期波动&#xff0c;将长线趋势或周期显现出来。数学上&#xff0c;移…

(四十八)用EWMA和GARCH模型估计波动率和相关系数

ARCH、EWMA、GARCH介绍 案例 对2016年至2018年沪深300指数的涨跌幅数据建立ARCH(1)、EWMA和GARCH(1,1)三种波动率模型&#xff0c;并以30天前的数据为起点&#xff0c;逐一预测后一天的波动率。 ARCH(1) import numpy as np import pandas as pd dfpd.read_excel(C:/Users/De…

Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测Backtest标准普尔指数 SP500时间序列

最近我们被客户要求撰写关于风险价值的研究报告&#xff0c;包括一些图形和统计输出。 此示例说明如何使用三种方法估计风险价值 (VaR) 并执行 VaR 回测分析。这三种方法是&#xff1a; 正态分布 历史模拟 指数加权移动平均线 (EWMA) 视频&#xff1a;风险价值VaR原理与Py…

指数加权移动平均法(EWMA)

指数加权移动平均法&#xff08;EWMA&#xff09; https://www.cnblogs.com/jiangxinyang/p/9705198.html ** 本文内容来自于吴恩达深度学习公开课 1、概述 加权移动平均法&#xff0c;是对观察值分别给予不同的权数&#xff0c;按不同权数求得移动平均值&#xff0c;并以最…

R语言指数加权模型EWMA预测股市多变量波动率时间序列

最近我们被客户要求撰写关于波动率的研究报告&#xff0c;包括一些图形和统计输出。 从广义上讲&#xff0c;复杂的模型可以实现很高的预测准确性。 但是您的读者需要快速理解。他们没有意愿或时间去处理任何太乏味的事情&#xff0c;即使它可以稍微准确一些。简单性是商业中…

pandas 0.23.4 :'pd.ewma'没有这个模块,改用`Series.ewm` 或 降低版本到 pandas 0.21.0

问题&#xff1a; 在进行画出指数平滑移动平均线&#xff0c;遇到如下问题&#xff1a; # pd.ewma(comNone, spanone) # 指数平均线。com&#xff1a;数据&#xff1b;span&#xff1a;时间间隔AttributeError: module pandas has no attribute ewma解决办法&#xff1a; 方…

java 移动平均_EWMA之——EWMA指数加权移动平均模型的Java实现

具体代码如下&#xff1a; package com.lyz.storm.ewma; import java.io.Serializable; /** * 实现指数移动平均值计算 * 实现中使用了流式风格的builder API * author liuyazhuang * */ public class EWMA implements Serializable { private static final long serialVersion…

EWMA模型估计波动率

#tushare ID&#xff1a;474220 指数移动平均&#xff08;Exponential Moving Average, EMA或EWMA&#xff09;是以指数式递减加权的移动平均。各数值的加权而随时间而指数式递减&#xff0c;越近期的数据加权越重&#xff0c;但较旧的数据也给予一定的加权。加权的程度以常数λ…

史上最通俗易懂的EWMA(指数加权移动平均)的参数解释以及程序代码

文章目录 一、EWMA&#xff08;指数加权移动平均&#xff09;是什么&#xff1f;二、详细的参数解释3、使用Python pandas库中的ewm()函数实现指数加权移动平均&#xff08;EWMA&#xff09;的示例代码总结 一、EWMA&#xff08;指数加权移动平均&#xff09;是什么&#xff1f…

用计算器来进行计算10的几次方的问题

一、首先找到计算器&#xff0c;然后就是找到科学&#xff0c;如图&#xff1a; 二、比如说进行10的2次方&#xff0c;先进行CE清除&#xff0c;然后就是选中10&#xff0c;然后就是选中如下&#xff1a;10^x,如图&#xff1a; 选择10的平方为100&#xff0c;如图&#xff1a; …

十次方项目登陆问题 token令牌解析,claims获取不到userid,求大神帮忙看下代码解决问题

十次方项目登陆问题 token令牌解析&#xff0c;claims获取不到userid 这个是拦截器&#xff1a; 判断角色是用户还是管理员&#xff0c;如果是用户就存入(“claims_user”,token);到controller控制层 此时clims为空&#xff0c;所以下面取值为权限不足

C语言求次方代码

使用pow库函数求2的10次方 #include <stdio.h> #include <math.h>int main() {double a pow(2, 10);printf("%lf",a);return 0; }使用C编译器运行程序 只需更换pow函数中的参数即可求其他结果 _Check_return_ double __cdecl pow(_In_ double _X, …

十次方:区块链需要服务器吗?

随着区块链被正名&#xff0c;上升国家战略后&#xff0c;区块链“忽如一夜春风来&#xff0c;瞬间火遍了全国”。 什么是区块链? 区块链技术是指全民参与记账的一种方式。所有系统背后都有一个数据库&#xff0c;你可以把它看作是一个大账簿。目前是各自记各自的账。它最本…

十次方:服务器的1U、2U、U代表什么意思?

我们在租用或购买服务器的时候&#xff0c;其中有个需要考虑的因素是&#xff0c;我们的服务器需要选择多少U?有1U、2U、4U等服务器可以选择&#xff0c;那么这里的U代表是什么意思? 服务器中的 “U” 代表什么意思 ? 服务器里的“U”特指的是服务器机箱的高度&#xff0c…

五次方数(C语言)

解题思路&#xff1a; 本题的难点在于如何判断边界&#xff0c;我们先判断上边界&#xff1a;我们试着以每位数最大单位数9为边界&#xff0c;所以9^559049,有5位数&#xff0c;所以5*59049295245&#xff1b; 下边界&#xff1a;按题目要求&#xff0c;对一个数十进制表示时的…

科学计算机怎么用10次方,一个数怎么用计算器开10次方

2010-10-20 关于使用计算器&#xff1f;谢谢 那个x^y的按键就是x的y次方的意思 不知道您上高中没有&#xff0c;大概是上高中的时候学的&#xff0c;开根号的新的表示方法 比如说根号下3&#xff0c;也就是2次根号下3&#xff0c;就等于3的2分之1次方 再比如3次根号下16&#x…

window如何安装head插件

head插件是给Elasticsearch提供的图形化界面 1&#xff0c;下载地址 head插件下载地址 2&#xff0c;解压 3&#xff0c;安装node js&#xff0c;安装cnpm npm install ‐g cnpm ‐‐registryhttps://registry.npm.taobao.org4&#xff0c;将grunt安装为全局命令 。Grunt是…

用计算机怎么按四分之三次方等于多少,八十一分之十六的负四分之三次方怎么算,要具体过程,答案是多少?...

八十一分之十六的负四分之三次方怎么算&#xff0c;要具体过程&#xff0c;答案是多少&#xff1f;以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01; 八十一分之十六的负四分之三次方怎么算&a…

十次方:机架式服务器和塔式服务器有什么区别?

通过服务器外形的结构,可以把服务器分为塔式、机架式、刀片式服务器三种类型。而目前市场上比较常见的是塔式和机架式服务器两种,那么这两种服务器有什么区别呢? 外形上: 塔式服务器它的外形上跟我们普通电脑的主机差不多,是立的,可以随便放置,无需机柜。只不过个头更…