pandas 0.23.4 :'pd.ewma'没有这个模块,改用`Series.ewm` 或 降低版本到 pandas 0.21.0

article/2025/10/26 13:17:18

问题:

在进行画出指数平滑移动平均线,遇到如下问题:

# pd.ewma(com=None, span=one)  # 指数平均线。com:数据;span:时间间隔AttributeError: module 'pandas' has no attribute 'ewma'

解决办法:

方法一:
换用下面的方法

# Series.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0)
# com : float, optional
# Specify decay in terms of center of mass, \(\alpha = 1 / (1 + com),\text{ for } com \geq 0\)
# span : float, optional
# Specify decay in terms of span, \(\alpha = 2 / (span + 1),\text{ for } span \geq 1\)
# halflife : float, optional
# Specify decay in terms of half-life, \(\alpha = 1 - exp(log(0.5) / halflife),\text{ for } halflife > 0\)
# alpha : float, optional
# Specify smoothing factor \(\alpha\) directly, \(0 < \alpha \leq 1\)
# New in version 0.18.0.
# min_periods : int, default 0
# Minimum number of observations in window required to have a value (otherwise result is NA).
# freq : None or string alias / date offset object, default=None (DEPRECATED)
# Frequency to conform to before computing statistic
# adjust : boolean, default True
# Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)
# ignore_na : boolean, default False
# Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behaviorstock_day["close"].ewm(span=30).mean().plot()

方法二:
pandas 0.23.4版本中,已经不存在这种方法,回退到之前版本pandas 0.21.0就一切完美

pip install pandas==0.21

实例:

# 简单移动平均线(SMA),又称“算数移动平均线”,是指特定期间的收盘价进行平均化
# 例:5日的均线  SMA=(C1+ C2 + C3 + C4 + C5) / 5  # Cn为数据中第n天的数# 计算移动平均线,对每天的股票的收盘价进行计算 close指标
# pd.rolling_mean(data, window=5)  # 这种方法已经淘汰了
data.rolling(window=n).mean().plot()  # window=n n日的平均数
# 加权移动平均线(WMA):为了提高最近股票(收盘价)数据的影响,防止被平均
# 1) 末日加权移动平均线:
MA(N) = (C1+ C2 + C3 + C4 + ... + Cn *2) / (n+1)# 2) 线性加权移动平均线(给的权重比例太大,导致最近的时间序列数据影响过大,一般不选择):
MA(N) = (C1+ C2 * 2 + C3 * 3 + C4 * 4 + ... + Cn * n) / (1 + 2 + ... + n)# 3) 指数平滑移动平均线(EWMA):
# 提高最近的数据的比重,不存在给的过大;
# 比重都是小数,所有天书的比重加起来等于1
y=[2 * x + (N - 1) * y' ]/ (N + 1)  # x:当天的价格;N:第几天;y':上一次的EWMA结果# pd.ewma(com=None, span=one)  # 指数平均线。com:数据;span:时间间隔
# 股票时间序列数据处理
stock_day = pd.read_csv("./data/stock_day/stock_day.csv")
stock_day.sort_index()stock_day["index"] = [i for i in range(stock_day.shape[0])]
val = stock_day[["index", "open", "close", "high", "low"]].valuesfig, axes = plt.subplots(nrows=1, ncols=1, figsize=(20,8), dpi=80)
# K线图
candlestick_ochl(axes, val, width=0.2, colorup="r", colordown="g")# 计算简单移动平均线,对每天的股票的收盘价进行计算 close指标
# pd.rolling_mean(stock_day["close"], window=5)  # 这种方法在pandas 0.23.4 已经淘汰了
# stock_day["close"].rolling(window=5).mean().plot()
# stock_day["close"].rolling(window=10).mean().plot()
# stock_day["close"].rolling(window=30).mean().plot()
# stock_day["close"].rolling(window=60).mean().plot()
# stock_day["close"].rolling(window=120).mean().plot()# 画出指数平滑移动平均线
# 方法一:
stock_day["close"].ewm(span=10).mean().plot()
# 方法二:pandas 0.21.0及以下版本的使用方法
#  pd.ewma(stock_day["close"], span=10).plot()plt.show()

在这里插入图片描述

具体在pandas 0.23.4版本中还在继续查找其方法!


http://chatgpt.dhexx.cn/article/VCIwcC1s.shtml

相关文章

java 移动平均_EWMA之——EWMA指数加权移动平均模型的Java实现

具体代码如下&#xff1a; package com.lyz.storm.ewma; import java.io.Serializable; /** * 实现指数移动平均值计算 * 实现中使用了流式风格的builder API * author liuyazhuang * */ public class EWMA implements Serializable { private static final long serialVersion…

EWMA模型估计波动率

#tushare ID&#xff1a;474220 指数移动平均&#xff08;Exponential Moving Average, EMA或EWMA&#xff09;是以指数式递减加权的移动平均。各数值的加权而随时间而指数式递减&#xff0c;越近期的数据加权越重&#xff0c;但较旧的数据也给予一定的加权。加权的程度以常数λ…

史上最通俗易懂的EWMA(指数加权移动平均)的参数解释以及程序代码

文章目录 一、EWMA&#xff08;指数加权移动平均&#xff09;是什么&#xff1f;二、详细的参数解释3、使用Python pandas库中的ewm()函数实现指数加权移动平均&#xff08;EWMA&#xff09;的示例代码总结 一、EWMA&#xff08;指数加权移动平均&#xff09;是什么&#xff1f…

用计算器来进行计算10的几次方的问题

一、首先找到计算器&#xff0c;然后就是找到科学&#xff0c;如图&#xff1a; 二、比如说进行10的2次方&#xff0c;先进行CE清除&#xff0c;然后就是选中10&#xff0c;然后就是选中如下&#xff1a;10^x,如图&#xff1a; 选择10的平方为100&#xff0c;如图&#xff1a; …

十次方项目登陆问题 token令牌解析,claims获取不到userid,求大神帮忙看下代码解决问题

十次方项目登陆问题 token令牌解析&#xff0c;claims获取不到userid 这个是拦截器&#xff1a; 判断角色是用户还是管理员&#xff0c;如果是用户就存入(“claims_user”,token);到controller控制层 此时clims为空&#xff0c;所以下面取值为权限不足

C语言求次方代码

使用pow库函数求2的10次方 #include <stdio.h> #include <math.h>int main() {double a pow(2, 10);printf("%lf",a);return 0; }使用C编译器运行程序 只需更换pow函数中的参数即可求其他结果 _Check_return_ double __cdecl pow(_In_ double _X, …

十次方:区块链需要服务器吗?

随着区块链被正名&#xff0c;上升国家战略后&#xff0c;区块链“忽如一夜春风来&#xff0c;瞬间火遍了全国”。 什么是区块链? 区块链技术是指全民参与记账的一种方式。所有系统背后都有一个数据库&#xff0c;你可以把它看作是一个大账簿。目前是各自记各自的账。它最本…

十次方:服务器的1U、2U、U代表什么意思?

我们在租用或购买服务器的时候&#xff0c;其中有个需要考虑的因素是&#xff0c;我们的服务器需要选择多少U?有1U、2U、4U等服务器可以选择&#xff0c;那么这里的U代表是什么意思? 服务器中的 “U” 代表什么意思 ? 服务器里的“U”特指的是服务器机箱的高度&#xff0c…

五次方数(C语言)

解题思路&#xff1a; 本题的难点在于如何判断边界&#xff0c;我们先判断上边界&#xff1a;我们试着以每位数最大单位数9为边界&#xff0c;所以9^559049,有5位数&#xff0c;所以5*59049295245&#xff1b; 下边界&#xff1a;按题目要求&#xff0c;对一个数十进制表示时的…

科学计算机怎么用10次方,一个数怎么用计算器开10次方

2010-10-20 关于使用计算器&#xff1f;谢谢 那个x^y的按键就是x的y次方的意思 不知道您上高中没有&#xff0c;大概是上高中的时候学的&#xff0c;开根号的新的表示方法 比如说根号下3&#xff0c;也就是2次根号下3&#xff0c;就等于3的2分之1次方 再比如3次根号下16&#x…

window如何安装head插件

head插件是给Elasticsearch提供的图形化界面 1&#xff0c;下载地址 head插件下载地址 2&#xff0c;解压 3&#xff0c;安装node js&#xff0c;安装cnpm npm install ‐g cnpm ‐‐registryhttps://registry.npm.taobao.org4&#xff0c;将grunt安装为全局命令 。Grunt是…

用计算机怎么按四分之三次方等于多少,八十一分之十六的负四分之三次方怎么算,要具体过程,答案是多少?...

八十一分之十六的负四分之三次方怎么算&#xff0c;要具体过程&#xff0c;答案是多少&#xff1f;以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容&#xff0c;让我们赶快一起来看一下吧&#xff01; 八十一分之十六的负四分之三次方怎么算&a…

十次方:机架式服务器和塔式服务器有什么区别?

通过服务器外形的结构,可以把服务器分为塔式、机架式、刀片式服务器三种类型。而目前市场上比较常见的是塔式和机架式服务器两种,那么这两种服务器有什么区别呢? 外形上: 塔式服务器它的外形上跟我们普通电脑的主机差不多,是立的,可以随便放置,无需机柜。只不过个头更…

【十次方】Springboot中使用SpringCache做缓存

Spring全家桶分布式微服务&#xff08;十次方项目学习&#xff09; 十次方学习交流qq群&#xff1a;672373393 其实在sptringboot中本身提供了一个缓存SpringCache&#xff0c;相比redis更加的简单&#xff0c;但是相对的功能也没有redis强大。如果没有其它特别的需求&#xff…

10的几次方 用计算机计算公式,在excel中如何计算10的几次方呢

excel的运算功能我们都知道非常强大&#xff0c;但是在excel中如何计算10的几次方呢&#xff1f;今天小编就通过一个简单的例子来给大家介绍下在excel中10的几次方的输入和运算方法。 第一、excel 10的几次方运算结果。 在excel中如何得到 10的几次方的结果呢&#xff1f;提供两…

【十次方】Springboot中使用Redis做缓存

Spring全家桶分布式微服务&#xff08;十次方项目学习&#xff09; 十次方学习交流qq群&#xff1a;672373393 今天学习十次方项目&#xff0c;其中说到了如何在springboot框架中如何使用redis缓存&#xff0c;写篇博客记录一下。 为什么要用缓存&#xff1f; 在我们平时开发…

python开三次方_python 三次方

广告关闭 腾讯云11.11云上盛惠 ,精选热门产品助力上云,云服务器首年88元起,买的越多返的越多,最高返5000元! python语言支持以下类型的运算符: 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符成员运算符 身份运算符 运算符优先级算术运算符 + — * % **…

十次方微服务全套课程介绍

连接资源地址 一&#xff1a;课程简介 《十次方社交系统》采用目前主流的微服务系统架构SpringBootSpringCloudSpringData进行开发&#xff0c;前端技术采用Vue.js。系统整体分为三大部分&#xff1a;微服务、网站前台、网站管理后台。功能模块包括文章、问答、招聘、活动、吐…

【JVM】jvm简介特点和jvm在整个计算机框架中的位置

本文目录 一、JVM概念二、JVM介绍三、JVM特点四、JVM的位置一、JVM概念 什么是JVM? JVM(Java Virtual Machine的缩写)一般指java虚拟机。 Java虚拟机(Java Virtual Machine 简称JVM)是运行所有Java程序的抽象计算机,是Java语言的运行环境,它是Java 最具吸引力的特性之…

JVM - 堆

# JVM - 堆 JDK版本&#xff1a;1.8 # 1、堆的核心概述 堆内存针对于JVM进程是唯一的&#xff0c;也就是一个进程只有一个JVM&#xff0c;一个进程下会存在多个线程&#xff0c;这些线程共享同一个堆空间&#xff0c;其中还可以被划分为线程私有的缓冲区(Thread Local Allocat…