独立成分分析算法(ICA)

article/2025/11/9 5:35:14

ICA算法

考虑这样的一个问题,叫做”鸡尾酒派对问题”。这里,在派对上,有n个说话的人单独地说话,并且所有在房间里的麦克分只能收到n个说话人的重叠的声音。但是我们说有n个不同的麦克分位于房间里,因为每个麦克分距离每个说话者的距离是不同的。使用这些麦克分的录音记录,我们是否可以分离出原始n个说话者的语音信号呢?
为了正式化这个问题,我们假设我们有一些数据 sRn ,是由n个独立的声音源产生的,我们可以得到:
x=As
这里A是一个未知的方阵叫做混合矩阵。如果我们给定一个数据集 {x(i);i=1,....,m} ,我们的目标是恢复声源 s(i) ,这个声源产生了我们的数据 (x(i)=As(i))
针对这个问题我们推导出ICA算法。
我们假设每个声源 si 的分布是由密度 ps 给出,所以声源 s 的联合分布是由下式给出:ni=1ps(si)
记住想要模型化联合分布为边缘分布的乘积,必须满足每个声源相互独立的假设。
由于公式 px(x)=ps(Wx)|W| W=A1
所以可以得到
p(x)=ni=1ps(wTix)|W|
剩下要做的就是具化每个 ps
回想,给定一个实随机变量z,它的累积分布函数(cdf)的定义为 F(z0)=P(zz0)=z0pz(z)dz ,同时z的密度函数也可以通过 pz(z)=F(z) 得到。
我们要选的cdf必须是从0到1单调上升的函数。我们不能选高斯分布,因为ICA算法对其不起作用(由于其分布的旋转对称性)。所以一般默认选择sigmoid函数比较合理,即 g(s)=1/(1+e(s)) ,因此 ps(s)=g(s)
方阵W是我们模型的参数,给定一个训练集 x(i);i=1,...,m ,其对数似然函数为:
这里写图片描述
我们可以就W而言最大化这个函数,推导的过程需要知道 W|W|=|W|(W(1))T 我们通过随机梯度下降算法,推得对于每个训练样例 x(i) 其更新规则为:
这里写图片描述
其中 α 是学习速率。
在算法收敛之后,我们可以通过计算 s(i)=Wx(i) 以恢复原始声源。


http://chatgpt.dhexx.cn/article/j2Exl8Yg.shtml

相关文章

独立成分分析(ICA)降噪应用时存在哪些问题?

关注“心仪脑”查看更多脑科学知识的分 关键词:降噪、ICA 对经常处理脑电信号的朋友来说,降噪是必不可少的环节。眼动、眨眼、肌肉运动、脉搏等噪声会严重污染脑电,严重影响脑电的后续分析。2001年提出的FastICA算法使ICA可以真正稳定地分析…

因子分析_主成分分析_独立成分分析_斯坦福CS229_学习笔记

Part VIII 因子分析 主成分分析 独立成分分析 在上个部分介绍了EM算法,在此部分因子分析中,我们会再次应用到。 因子分析、主成分分析和独立成分分析都作为对于数据维度进行处理的手段,对于我们理解数据、更好的表示数据都起到或多或少的作用…

Python专栏 | 独立成分分析(ICA)的实例应用:消除伪影信号

关注微信公众号:脑机接口研习社 了解脑机接口最近进展 系列文章目录 Python专栏 | 脑电图和脑磁图(EEG/MEG)的数据分析方法之载入数据 Python专栏 | MNE脑电数据(EEG/MEG)可视化 Python专栏 | MNE数据预处理方法——独立成分分析 持续更新中…… 文章目录 系列文…

【医学信号处理与MATLAB(5)】独立成分分析法-ICA

接着上一节PCA的内容,我们来谈一下ICA为何同样重要。 目录 引入:鸡尾酒会问题独立成分分析法中心极限定理中心极限定理的MATLAB代码实现 测量非高斯程度(Kurtosis峰度)独立成分分析法处理流程使用FASTICA找出独立成分MATLAB代码实现 引入:鸡…

ICA独立成分分析去除EEG伪影

目录 介绍ICA假设方法组件投影实验数据样本移除眨眼和肌肉伪影一些严重污染的脑电数据 本分享为脑机学习者Rose整理发表于公众号:脑机接口社区 .QQ交流群1:903290195(已满,请加群2),群2:941473018 介绍 眼动&#x…

fMRI独立成分分析方法(ICA)工具GIFT

软件下载连接: Software - TReNDS (trendscenter.org)https://trendscenter.org/software/下载完成后,在MATLAB中添加其路径即可。 在MATLAB命令行输入gift。打开窗口页面: 1、点击setup ICA Analysis 新建一个gica文件夹,存储…

《大话脑成像》之:独立成分分析

少年,我看你骨骼精奇,是万中无一的武学奇才,维护世界和平就靠你了,我这有本武林秘籍《九阴真经之万军丛中听声辩位分筋错骨取敌将首级之盲源分离大法》,简称,《独立成分分析》,见与你有缘&#…

独立成分分析(Independent Component Analysis,ICA)模型介绍

独立成分分析ICA模型 1 历史背景2 ICA基本模型3 独立与不相关 \qquad 1 历史背景 \qquad 独立成分分析思想和方法最早源于上世纪八十年代几个法国学者的研究工作,尽管当时他们并没有命名其为ICA;在1986年举行的神经网络计算会议上,法国学者Heraull和Jutt…

【详细版】独立成分分析:算法和应用(一)

独立成分分析:算法和应用 翻译原文自己的理解 原文:Independent component analysis: algorithms and applications 作者:A. Hyvarinen, E. Oja 时间:2000年 注:详细版原文太长,分两篇来写;另外…

Python专栏 | MNE数据预处理方法——独立成分分析

关注微信公众号:脑机接口研习社 了解脑机接口最近进展 系列文章目录 Python专栏 | 脑电图和脑磁图(EEG/MEG)的数据分析方法之载入数据 Python专栏 | MNE脑电数据(EEG/MEG)可视化 文章目录 系列文章目录预处理(Preprocessing) 预处理&#x…

学习笔记 | 独立成分分析(ICA, FastICA)及应用

学习笔记 | 独立成分分析[ICA, FastICA]及应用 1 背景说明 2 算法原理 2.1 ICA简介 2.2 形式化表达 3 算法步骤与代码 4 算法改进:FastICA 5 ICA实例与应用 6 小结 概要: 这篇博客和博客学习笔记|主成分分析[PCA]及其若干应用属于一个系列&#xf…

ICA独立成分分析去除脑电伪影

今天分享的这篇利用独立成分分析ICA去除EEG伪影是翻译自jung大神的一篇文章。 目录 1 介绍 2 方法 3 实验数据样本 1 介绍 眼动,眨眼,肌肉,心脏和线的噪音会严重污染脑电图活动,这在脑电解释和分析中会产生非常严重问题。研究…

独立成分分析(ICA)

1.概念 独立成分分析是从多元(多维)统计数据中寻找潜在因子或成分的一种方法.ICA与其它的方法重要的区别在于,它寻找满足统计独立和非高斯的成分。这里我们简要介绍ICA的基本概念、应用和估计原理。 1.1 多元数据的线性表示 统计数据处理及相关领域中的一…

独立成分分析ICA系列2:概念、应用和估计原理.

1.概念 独立成分分析是从多元(多维)统计数据中寻找潜在因子或成分的一种方法.ICA与其它的方法重要的区别在于,它寻找满足统计独立和非高斯的成分。这里我们简要介绍ICA的基本概念、应用和估计原理。 1.1 多元数据的线性表示 统计数据处理及相关领域中的一…

详解独立成分分析

最近在学习数据降维的一些方法(有关数据降维的其他内容请看这篇文章),虽然独立成分分析不算是严格意义上的降维方法,但是它和PCA有着千丝万缕的联系,所以打算专门写一篇文章来学习ICA的相关知识,看了挺多的关于ICA的博文&#xff…

独立成分分析

在已知语音信号方向的情况下,波束形成能明显改善语音质量,提高信噪比;然而在实际环境中,人可能是走动的,即使坐立不动,由于身体的扭曲使得语音到达阵列的方向也是变化的,此时波束形成效果受到限…

独立成分分析(Independent Component Analysis,ICA)原理及代码实现

过程监控中会用到很多中方法,如主成分分析(PCA)、慢特征分析(SFA)、概率MVA方法或独立成分分析(ICA)等为主流算法。 其中PCA主要多用于降维及特征提取,且只对正太分布(高…

清理vdbench后台进程

当我们打开一个终端,用nohup运行vdbench程序。断开连接后,你发现你写的配置文件有误,想关闭已有的vdbench进程。你重新连接上终端,咦,我的jobs命令怎么没有显示我的nohup任务呢?这是因为你的nohup任务的sh进…

Nas性能测试工具-vdbench

版本: vdbench50406 简介: vdbench是一个 I/O 工作负载生成器,用于验证数据完整性和度量直接附加和网络连接的存储的性能。它是一个免费的工具,容易使用,而且常常用于测试和基准测试。 配置参数: 大文…

Linux中vdbench的安装与使用

vdbench是一个 I/O 工作负载生成器,用于验证数据完整性和度量直接附加和网络连接的存储的性能。它是一个免费的工具,容易使用,而且常常用于测试和基准测试。 可以使用vdbench测试磁盘和文件系统的读写性能。 环境:Ubuntu 16.04 …