Redis数据结构之——跳表skiplist

article/2025/8/8 0:14:01

写在前面

以下内容是基于Redis 6.2.6 版本整理总结

一、跳表(skiplist)

如何理解跳表?在了解跳表之前,我们先从普通链表开始,一点点揭开跳表的神秘面纱~

首先,普通单链表来说,即使链表是有序的,我们要查找某个元素,也需要从头到尾遍历整个链表。这样效率很低,时间复杂度是O(n)。

在这里插入图片描述
那么有没有方法提升查询效率呢?我们可以尝试为链表建立“索引”来提升查询效率。如下图,我们在原始链表的基础上,每两个元素提取一个索引,down指向原始链表的节点:
在这里插入图片描述
此时,假如我们要查询值为19的节点,我们从索引层开始遍历,当遍历到16时,下个节点的值为23,所以,19一定在这两个节点之间。我们通过16节点的down指针来到原始链表,将继续遍历,直到找到值为19的节点。在没有建“索引”之前,我们需要遍历8次,才能找到19,而在建立“索引”后,需要6次就能找到,也就是,索引帮我们减少了查询的次数。

那如果我们再建一级索引呢?哈哈哈,没想到吧也是6次,这是因为我们的数据量太少,即便加了两级索引,优化效果也不是很明显。在数据量大时,优化效果还是很明显的,有兴趣可以自己动手画一画。

在这里插入图片描述

1.1 跳表的时间复杂度

假设链表有n个节点,每两个节点生成一个索引,则有第一层索引节点的个数为n/2,第二层索引节点的个数是第一层个数的一半n/4,以此类推,第h层节点的个数就是n/(2^h)。假设,第h层有两个节点,则:h = log2n - 1,再算上原始链表,则整个跳表的高度就是log2n。

我们在查询某个数据的时候,每一层需要遍历m个节点,那么在跳表中查询某个数据的时间复杂度就是:O(m*log2n)。那m是多少呢? 按照上面每两个节点上升一个索引节点的索引结构,我们每一层索引最多遍历3个节点,为什么呢?解释如下:

在这里插入图片描述
假设我们查找的还是19,在第k层索引中,当我们遍历到11时,发现19在11和23之间,我们通过11的down节点,来到第k-1层。在第k-1层索引中,11 到 23 最多包含3个节点(包含11 和 23 的节点),所以在第k-1索引,我们最多需要遍历3个节点,依次类推,每一层索引都最多只需要遍历3个节点。

通过上面的分析,我们知道了m = 3,也就是说在跳表中查询任意节点的时间复杂度是O(3*log2n),去掉常数项后,时间复杂度就是:O(log2n)。这个查找跟二分查找的时间复杂度一样。换句话说,我们是基于单链表实现了二分查找,神奇吧。但是,这种查询效率的提升是有代价的,也就是我们需要维护多层级索引,才能实现。这也是一种空间换时间的思路。

1.2 空间复杂度

要实现log2n的时间复杂度,跳表就需要额外存储这些索引的空间。那么,需要多大的空间呢?我们来分析一下:

假设原始链表有n个节点,按照每连个节点上升一个索引节点的索引结构,第一层有n/2,第二层n/4,依次类推,第h层有n/2^h个索引节点。假设第h层有2个节点。则总共有:
n/2 + n/4 + n/8 + … + 2 = n-2。所以,跳表的空间复杂度是O(n)

也就是说,如果将含有n个节点的链表构造成跳表,我们还需要额外再用接近n个节点来存储这些索引,还有没有办法较少索引占的空间呢?答案是有的,上面的分析是基于每两个节点上升一个索引节点,那么换成3个、5个呢?如果为3,也很好分析,需要的索引总数为:n/3 + n/9 + n/27 + … + 3 + 1 = n/2。尽管空间复杂还是O(n),但实际上索引的数量已经减少了一半了。

在实际开发中,原始链表中的对象可能是很大的对象,而索引节点只是存储关键的值和指针,相较于原始节点,大小可以忽略不计。

1.3 跳表的插入和删除

我们想在跳表中插入和删除一个节点,第一步是要找到插入和删除的位置,然后再执行插入或者删除,因为跳表的查询时间复杂度是O(log2n),插入和删除的时间复杂度也是O(log2n)。

1.3.1 插入

在这里插入图片描述

1.3.2 删除

删除操作就需要注意一下,如果删除的节点也存在于索引节点中,那么,索引中的节点也要删除。单链表中的删除,需要拿到前驱节点的指针,如果是双向链表就不用考虑了。

1.4 跳表索引的动态更新

当我们一直往跳表中添加元素,如果不更新索引就可能出现,某2个索引之间的索引数过多,极端情况下,会退化为单向链表。

作为一种动态数据结构,我们需要某种手段作为索引节点和原始链表大小的平衡,也就是说,当链表中的节点数增多时,也响应的增加一些索引节点,避免复杂度的退化。红黑树和AVL树是通过左旋和右旋来维持左右子树的平衡。跳表则是通过随机函数来维护这种平衡。

在这里插入图片描述

2、跳表在Redis中的应用

有序集合 zet 的底层实现就是跳表。大部分情况下,跳表的效率可以和平衡树媲美,平均时间复杂度O(logn),最坏O(n)。

2.1 跳表源码

每次创建一个新的跳表节点时,会根据幂次定律(越大的数出现的概率越小)随机生成一个介于1到32之间的数作为level数组的大小,这个数组大小就是层的高度。level层数确定源码:

// src/t_zset.c
int zslRandomLevel(void) {int level = 1;while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))level += 1;return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}

两个宏定义

// src/sever.h
#define ZSKIPLIST_MAXLEVEL 32 /* Should be enough for 2^64 elements */
#define ZSKIPLIST_P 0.25      /* Skiplist P = 1/4 */

server.h

// 996行
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {// sds 对象,唯一的sds ele;// 分值double score;// 后退指针,用于从后往前遍历使用struct zskiplistNode *backward;// 层数struct zskiplistLevel {// 前进指针struct zskiplistNode *forward;// 跨度,用来确定本节点再链表中的排位  zrankunsigned long span;} level[];
} zskiplistNode;typedef struct zskiplist {// 指向跳表头节点和尾节点的指针struct zskiplistNode *header, *tail;// 跳表中的元素个数,不包含头节点 zcardunsigned long length;// 跳表中层数最高的节点的层数int level;
} zskiplist;

1.3 创建skiplist

zskiplistNode *zslCreateNode(int level, double score, sds ele) {zskiplistNode *zn =zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));zn->score = score;zn->ele = ele;return zn;
}/* Create a new skiplist. */
zskiplist *zslCreate(void) {int j;zskiplist *zsl;zsl = zmalloc(sizeof(*zsl));zsl->level = 1;zsl->length = 0;zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {zsl->header->level[j].forward = NULL;zsl->header->level[j].span = 0;}zsl->header->backward = NULL;zsl->tail = NULL;return zsl;
}

1.4 跳表的插入和删除

zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;unsigned int rank[ZSKIPLIST_MAXLEVEL];int i, level;serverAssert(!isnan(score));x = zsl->header;for (i = zsl->level-1; i >= 0; i--) {/* store rank that is crossed to reach the insert position */rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];while (x->level[i].forward &&(x->level[i].forward->score < score ||(x->level[i].forward->score == score &&sdscmp(x->level[i].forward->ele,ele) < 0))){rank[i] += x->level[i].span;x = x->level[i].forward;}update[i] = x;}/* we assume the element is not already inside, since we allow duplicated* scores, reinserting the same element should never happen since the* caller of zslInsert() should test in the hash table if the element is* already inside or not. */level = zslRandomLevel();if (level > zsl->level) {for (i = zsl->level; i < level; i++) {rank[i] = 0;update[i] = zsl->header;update[i]->level[i].span = zsl->length;}zsl->level = level;}x = zslCreateNode(level,score,ele);for (i = 0; i < level; i++) {x->level[i].forward = update[i]->level[i].forward;update[i]->level[i].forward = x;/* update span covered by update[i] as x is inserted here */x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);update[i]->level[i].span = (rank[0] - rank[i]) + 1;}/* increment span for untouched levels */for (i = level; i < zsl->level; i++) {update[i]->level[i].span++;}x->backward = (update[0] == zsl->header) ? NULL : update[0];if (x->level[0].forward)x->level[0].forward->backward = x;elsezsl->tail = x;zsl->length++;return x;
}// 删除
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {int i;for (i = 0; i < zsl->level; i++) {if (update[i]->level[i].forward == x) {update[i]->level[i].span += x->level[i].span - 1;update[i]->level[i].forward = x->level[i].forward;} else {update[i]->level[i].span -= 1;}}if (x->level[0].forward) {x->level[0].forward->backward = x->backward;} else {zsl->tail = x->backward;}while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)zsl->level--;zsl->length--;
}

三、总结

  1. 跳表是有序集合zset的实现之一
  2. 跳表由zskiplist 和 zskiplistNode两个结构组成,zskiplist保存跳表的信息,如表头和表尾节点、跳表的长度等,zskiplistNode 保存节点详细信息
  3. 每个跳表节点的层高都是 1~32 之间的随机数
  4. 跳表中的对象是唯一的
  5. 跳表中的元素是按照分值从小到大排列,当分值相同时,按照成员对象的大小排序

文章参考与<零声教育>的C/C++linux服务期高级架构系统教程学习


http://chatgpt.dhexx.cn/article/hWho1ao5.shtml

相关文章

redis中ziplist,skiplist

ziplist压缩表 ziplist主要是为了节约内存&#xff0c;他将元素存储在一块连续的内存空间中&#xff0c;这样在查询数据的时候也可以利用CPU的缓存访问数据&#xff0c;加快查询的效率 相较于数组而言。我们知道,数组要求每个元素的大小都相同,如果我们要存储不同长度的字符串…

跳表-skiplist的简单实现

文章目录 1、什么是跳表-skiplist2、skiplist的效率如何保证&#xff1f;3、skiplist的实现4、skiplist跟平衡搜索树和哈希表的对比 1、什么是跳表-skiplist skiplist本质上也是一种查找结构&#xff0c;用于解决算法中的查找问题&#xff0c;跟平衡搜索树和哈希表的价值是一样…

跳表:Skiplist原理介绍和优缺点

skiplist介绍 不要求上下相邻两层链表之间的节点个数有严格的对应关系&#xff0c;而是为每个节点随机出一个层数(level)。比如&#xff0c;一个节点随机出的层数是3&#xff0c;那么就把它链入到第1层到第3层这三层链表中。为了表达清楚&#xff0c;下图展示了如何通过一步步的…

skiplist 跳跃表详解及其编程实现

skiplist介绍 跳表(skip List)是一种随机化的数据结构&#xff0c;基于并联的链表&#xff0c;实现简单&#xff0c;插入、删除、查找的复杂度均为O(logN)。跳表的具体定义&#xff0c; 请参考参考维基百科 点我&#xff0c;中文版。跳表是由William Pugh发明的&#xff0c;这…

浅析SkipList跳跃表原理及代码实现

转载请注明&#xff1a;http://blog.csdn.net/ict2014/article/details/17394259 SkipList在leveldb以及lucence中都广为使用&#xff0c;是比较高效的数据结构。由于它的代码以及原理实现的简单性&#xff0c;更为人们所接受。我们首先看看SkipList的定义&#xff0c;为什么叫…

跳表(skiplist)的理解

听到跳表(skiplist)这个名字,既然是list,那么应该跟链表有关。 跳表是有序链表,但是我们知道,即使对于排过序的链表,我们对于查找还是需要进行通过链表的指针进行遍历的,时间复杂度很高依然是O(n),这个显然是不能接受的。是否可以像数组那样,通过二分法进行查找呢,但…

SkipList详解

本文参考&#xff1a;《大数据日知录》 概念 SkipList是一种用来代替平衡树的数据结构。 虽然在最坏的情况下SkipList的效率要低于平衡树&#xff0c;但是大多数情况下效率仍然非常高&#xff0c;其插入、删除、查找的时间复杂度都是O(log(N))。 除了高效外&#xff0c;其实现…

跳表(skipList)

一、为何有skipList这种数据结构的出现 我们知道二分查找算法之所以能达到 O(logn) 这样高效的一个重要原因在于它所依赖的数据结构是数组&#xff0c;数组支持随机访问一个元素&#xff0c;通过下标很容易定位到中间元素。而链表是不支持随机访问的&#xff0c;只能从头到尾依…

跳表 skiplist 简介

跳表 skiplist 跳表 (Skip List) 是由 William Pugh 在 1990 年发表的文章 Skip Lists: A Probabilistic Alternative toBalanced Trees 中描述的一种查找数据结构&#xff0c;支持对数据的快速查找&#xff0c;插入和删除。 对于 AVL 树、红黑树等平衡树&#xff0c;在插入过…

SkipList(跳跃表)详解

Introduction: skiplist本质上也是一种查找结构&#xff0c;用于解决算法中的查找问题&#xff08;Searching&#xff09;&#xff0c;即根据给定的key&#xff0c;快速查到它所在的位置&#xff08;或者对应的value&#xff09; 一般用于解决查找问题的数据结构分为两个大类…

docker中国镜像

一,如果是像redis,mysql等官方的镜像,直接配置阿里云的镜像就可以 1,注册阿里云账号,并登录 2,打开这个网址 https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors 3,页面上会教怎么设置,如下面的截图 二,如果是私有仓库的镜像 非常感谢原作者:https://www.jiansh…

Docker 使用国内镜像仓库

Docker 使用国内镜像仓库 1、问题描述2、总结 1、问题描述 由于某些原因&#xff0c;导致Docker镜像在国内下载速度特别慢。所以为了沉浸式开发。最好切换为国内源。这里以163 的镜像仓库举例。首先修改/etc/docker/daemon.json配置文件。 sudo vi /etc/docker/daemon.json…

MacOS上配置docker国内镜像仓库地址

背景 docker官方镜像仓库网速较差&#xff0c;我们需要设置国内镜像服务 我的MacOS docker版本如下 设置docker国内镜像仓库地址 点击Settings点击Docker Engine修改配置文件&#xff0c;添加registry-mirrors {"builder": {"gc": {"defaultKeepS…

Docker国内镜像加速地址与详细说明

简介 对于动不动就几百M甚至上G的Docker镜像来说&#xff0c;官方镜像总是掉线或速度极慢&#xff0c;为了改善这种情况&#xff0c;建议切换成国内镜像。常用的国内镜像使用阿里云、网易的居多&#xff0c;本篇内容将记录一下Docker的这些国内镜像是怎么使用的。 国内常用的…

Docker国内镜像

1、下面这些镜像实测基本都用不了。 网易镜像中心&#xff1a;http://hub-mirror.c.163.com daocloud镜像市场&#xff1a;https://hub.daocloud.io 七牛云&#xff1a;https://reg-mirror.qiniu.com Azure&#xff1a;https://dockerhub.azk8s.cn 中科大: https://docke…

docker 国内镜像配置

一、常用镜像地址 1、中国科技大学:https://docker.mirrors.ustc.edu.cn 2、阿里云:https://cr.console.aliyun.com/ 3、Docker中国区官方镜像:https://registry.docker-cn.com 4、网易:http://hub-mirror.c.163.com 5、ustc:https://docker.mirrors.ustc.edu.cn 6、daoclo…

window docker国内镜像设置

刚开始使用的时候&#xff0c;发现因为网络的问题&#xff0c;经常出现镜像下载失败的情况。如下图所示。 这是应为docker服务在国外,直接访问会因为网络原因失败或者特别慢,因此我们可以将将镜像源设置为国内的。 一. 在桌面右下角出有一个docker的图标,鼠标右键点击setings,…

【Docker】Docker 设置国内镜像源_docker国内镜像库

文章目录 1. Docker阿里云镜像加速2. 参考资料 点击跳转&#xff1a;Docker安装MySQL、Redis、RabbitMQ、Elasticsearch、Nacos等常见服务全套&#xff08;质量有保证&#xff0c;内容详情&#xff09; 1. Docker阿里云镜像加速 在国内&#xff0c;从官方的Docker Hub仓库拉取…

docker构建国内镜像服务

在国内想要下载镜像比较困难&#xff0c;因此很多公司都构建自己的私有仓库。如何搭建私有仓库&#xff0c;请参考《docker私有仓库从无到有》。然而即使私有仓库服务构建完成&#xff0c;但是里面没有镜像&#xff0c;一样很苦恼。今天介绍一下如何利用国内云服务商提供的镜像…