skiplist 跳跃表详解及其编程实现

article/2025/8/8 0:09:00

skiplist介绍

跳表(skip List)是一种随机化的数据结构,基于并联的链表,实现简单,插入、删除、查找的复杂度均为O(logN)。跳表的具体定义,

请参考参考维基百科 点我,中文版。跳表是由William Pugh发明的,这位确实是个大牛,搞出一些很不错的东西。简单说来跳表也是

链表的一种,只不过它在链表的基础上增加了跳跃功能,正是这个跳跃的功能,使得在查找元素时,跳表能够提供O(log n)的时间复杂

度。红黑树等这样的平衡数据结构查找的时间复杂度也是O(log n),并且相对于红黑树这样的平衡二叉树skiplist的优点是更好的支持并

发操作,但是要实现像红黑树这样的数据结构并非易事,但是只要你熟悉链表的基本操作,再加之对跳表原理的理解,实现一个跳表数据

结构就是一个很自然的事情了。

此外,跳表在当前热门的开源项目中也有很多应用,比如LevelDB的核心数据结构memtable是用跳表实现的,redis的sorted set数据

结构也是有跳表实现的。

skiplist主要思想

先从链表开始,如果是一个简单的链表(不一定有序),那么我们在链表中查找一个元素X的话,需要将遍历整个链表直到找到元素X为止。

现在我们考虑一个有序的链表:

                                            

从该有序表中搜索元素 {13, 39} ,需要比较的次数分别为 {3, 5},总共比较的次数为 3 + 5 = 8 次。我们想下有没有更优的算法?  我们想到了对于

有序数组查找问题我们可以使用二分查找算法,但对于有序链表却不能使用二分查找。这个时候我们在想下平衡树,比如BST,他们都是通过把一些

节点取出来作为其节点下某种意义的索引,比如父节点一般大于左子节点而小于右子节点。因此这个时候我们想到类似二叉搜索树的做法把一些

节点提取出来,作为索引。得到如下结构:

                                     

在这个结构里我们把{3, 18, 77}提取出来作为一级索引,这样搜索的时候就可以减少比较次数了,比如在搜索39时仅比较了3次(通过比较3,18,39)。

当然我们还可以再从一级索引提取一些元素出来,作为二级索引,这样更能加快元素搜索。

这基本上就是跳表的核心思想,其实是一种通过“空间来换取时间”的一个算法,通过在每个节点中增加了向前的指针(即层),从而提升查找的效率。

跳跃列表是按层建造的。底层是一个普通的有序链表。每个更高层都充当下面列表的「快速跑道」,这里在层 i 中的元素按某个固定的概率 p (通常

为0.5或0.25)出现在层 i+1 中。平均起来,每个元素都在 1/(1-p) 个列表中出现, 而最高层的元素(通常是在跳跃列表前端的一个特殊的头元素)

在 O(log1/p n) 个列表中出现。

SkipList基本数据结构及其实现

一个跳表,应该具有以下特征:

1,一个跳表应该有几个层(level)组成;

2,跳表的第一层包含所有的元素;

3,每一层都是一个有序的链表;

4,如果元素x出现在第i层,则所有比i小的层都包含x;

5,每个节点包含key及其对应的value和一个指向同一层链表的下个节点的指针数组

如图所示。

                    

跳表基本数据结构

定义跳表数据类型:

//跳表结构
typedef struct skip_list
{int level;// 层数Node *head;//指向头结点
} skip_list;

其中level是当前跳表最大层数,head是指向跳表的头节点如上图。

跳表的每个节点的数据结构:

typedef struct node
{keyType key;// key值valueType value;// value值struct node *next[1];// 后继指针数组,柔性数组 可实现结构体的变长
} Node;

对于这个结构体重点说说,struct node *next[1] 其实它是个柔性数组,主要用于使结构体包含可变长字段。我们可以通过如下方法得到包含可变

层数(n)的Node *类型的内存空间:

#define new_node(n)((Node*)malloc(sizeof(Node)+n*sizeof(Node*)))

通过上面我们可以根据层数n来申请指定大小的内存,从而节省了不必要的内存空间(比如固定大小的next数组就会浪费大量的内存空间)。

跳表节点的创建

// 创建节点
Node *create_node(int level, keyType key, valueType val)
{Node *p=new_node(level);if(!p)return NULL;p->key=key;p->value=val;return p;
}

跳表的创建

列表的初始化需要初始化头部,并使头部每层(根据事先定义的MAX_LEVEL)指向末尾(NULL)

//创建跳跃表
skip_list *create_sl()
{skip_list *sl=(skip_list*)malloc(sizeof(skip_list));//申请跳表结构内存if(NULL==sl)return NULL;sl->level=0;// 设置跳表的层level,初始的层为0层(数组从0开始)Node *h=create_node(MAX_L-1, 0, 0);//创建头结点if(h==NULL){free(sl);return NULL;}sl->head = h;int i;// 将header的next数组清空for(i=0; i<MAX_L; ++i){h->next[i] = NULL;}srand(time(0));return sl;
}

跳表插入操作

我们知道跳表是一种随机化数据结构,其随机化体现在插入元素的时候元素所占有的层数完全是随机的,层数是通过随机算法产生的:

//插入元素的时候元素所占有的层数完全是随机算法
int randomLevel()
{int level=1;while (rand()%2)level++;level=(MAX_L>level)? level:MAX_L;return level;
}

相当与做一次丢硬币的实验,如果遇到正面(rand产生奇数),继续丢,遇到反面,则停止,用实验中丢硬币的次数level作为元素占有的层数。

显然随机变量 level 满足参数为 p = 1/2 的几何分布,level 的期望值 E[level] = 1/p = 2. 就是说,各个元素的层数,期望值是 2 层。

由于跳表数据结构整体上是有序的,所以在插入时,需要首先查找到合适的位置,然后就是修改指针(和链表中操作类似),然后更新跳表的

level变量。 跳表的插入总结起来需要三步:

1:查找到待插入位置, 每层跟新update数组;

2:需要随机产生一个层数;

3:从高层至下插入,与普通链表的插入完全相同;

比如插入key为25的节点,如下图。

对于步骤1,我们需要对于每一层进行遍历并保存这一层中下降的节点(其后继节点为NULL或者后继节点的key大于等于要插入的key),如下图,

节点中有白色星花标识的节点保存到update数组。

对于步骤2我们上面已经说明了是通过一个随机算法产生一个随机的层数,但是当这个随机产生的层数level大于当前跳表的最大层数时,我们

此时需要更新当前跳表最大层数到level之间的update内容,这时应该更新其内容为跳表的头节点head,想想为什么这么做,呵呵。然后就是更

新跳表的最大层数。

                 

对于步骤3就和普通链表插入一样了,只不过现在是对每一层链表进行插入节点操作。最终的插入结果如图所示,因为新插入key为25的节点level随机

为4大于插入前的最大层数,所以此时跳表的层数为4。

                

  实现代码如下:

bool insert(skip_list *sl, keyType key, valueType val)
{Node *update[MAX_L];Node *q=NULL,*p=sl->head;//q,p初始化int i=sl->level-1;/******************step1*******************///从最高层往下查找需要插入的位置,并更新update//即把降层节点指针保存到update数组for( ; i>=0; --i){while((q=p->next[i])&& q->key<key)p=q;update[i]=p;}if(q && q->key == key)//key已经存在的情况下{q->value = val;return true;}/******************step2*******************///产生一个随机层数levelint level = randomLevel();//如果新生成的层数比跳表的层数大if(level>sl->level){//在update数组中将新添加的层指向headerfor(i=sl->level; i<level; ++i){update[i]=sl->head;}sl->level=level;}//printf("%d\n", sizeof(Node)+level*sizeof(Node*));/******************step3*******************///新建一个待插入节点,一层一层插入q=create_node(level, key, val);if(!q)return false;//逐层更新节点的指针,和普通链表插入一样for(i=level-1; i>=0; --i){q->next[i]=update[i]->next[i];update[i]->next[i]=q;}return true;
}

跳表删除节点操作

删除节点操作和插入差不多,找到每层需要删除的位置,删除时和操作普通链表完全一样。不过需要注意的是,如果该节点的level是最大的,

则需要更新跳表的level。实现代码如下:

bool erase(skip_list *sl, keyType key)
{Node *update[MAX_L];Node *q=NULL, *p=sl->head;int i = sl->level-1;for(; i>=0; --i){while((q=p->next[i]) && q->key < key){p=q;}update[i]=p;}//判断是否为待删除的keyif(!q || (q&&q->key != key))return false;//逐层删除与普通链表删除一样for(i=sl->level-1; i>=0; --i){if(update[i]->next[i]==q)//删除节点{update[i]->next[i]=q->next[i];//如果删除的是最高层的节点,则level--if(sl->head->next[i]==NULL)sl->level--;}}free(q);q=NULL;return true;
}

跳表的查找操作

跳表的优点就是查找比普通链表快,其实查找操已经在插入、删除操作中有所体现,代码如下:

valueType *search(skip_list *sl, keyType key)
{Node *q,*p=sl->head;q=NULL;int i=sl->level-1;for(; i>=0; --i){while((q=p->next[i]) && q->key<key){p=q;}if(q && key==q->key)return &(q->value);}return NULL;
}

跳表的销毁

上面分别介绍了跳表的创建、节点插入、节点删除,其中涉及了内存的动态分配,在使用完跳表后别忘了释放所申请的内存,不然会内存泄露的。

不多说了,代码如下:

// 释放跳跃表
void sl_free(skip_list *sl)
{if(!sl)return;Node *q=sl->head;Node *next;while(q){next=q->next[0];free(q);q=next;}free(sl);
}
关于skiplist实现部分就到这里,完整代码及其测试请移步: https://github.com/ustcdane/skiplist/ 。

skiplist复杂度分析

skiplist分析如下图(摘自 这里)

      




完整代码及其测试: https://github.com/ustcdane/skiplist/ , 接下来可以尝试着分析Redis 源代码中skiplist相关的数据结构了。


参考:

https://www.cs.auckland.ac.nz/software/AlgAnim/niemann/s_skl.htm

http://www.cnblogs.com/xuqiang/archive/2011/05/22/2053516.html


http://chatgpt.dhexx.cn/article/XQ2oFK7o.shtml

相关文章

浅析SkipList跳跃表原理及代码实现

转载请注明&#xff1a;http://blog.csdn.net/ict2014/article/details/17394259 SkipList在leveldb以及lucence中都广为使用&#xff0c;是比较高效的数据结构。由于它的代码以及原理实现的简单性&#xff0c;更为人们所接受。我们首先看看SkipList的定义&#xff0c;为什么叫…

跳表(skiplist)的理解

听到跳表(skiplist)这个名字,既然是list,那么应该跟链表有关。 跳表是有序链表,但是我们知道,即使对于排过序的链表,我们对于查找还是需要进行通过链表的指针进行遍历的,时间复杂度很高依然是O(n),这个显然是不能接受的。是否可以像数组那样,通过二分法进行查找呢,但…

SkipList详解

本文参考&#xff1a;《大数据日知录》 概念 SkipList是一种用来代替平衡树的数据结构。 虽然在最坏的情况下SkipList的效率要低于平衡树&#xff0c;但是大多数情况下效率仍然非常高&#xff0c;其插入、删除、查找的时间复杂度都是O(log(N))。 除了高效外&#xff0c;其实现…

跳表(skipList)

一、为何有skipList这种数据结构的出现 我们知道二分查找算法之所以能达到 O(logn) 这样高效的一个重要原因在于它所依赖的数据结构是数组&#xff0c;数组支持随机访问一个元素&#xff0c;通过下标很容易定位到中间元素。而链表是不支持随机访问的&#xff0c;只能从头到尾依…

跳表 skiplist 简介

跳表 skiplist 跳表 (Skip List) 是由 William Pugh 在 1990 年发表的文章 Skip Lists: A Probabilistic Alternative toBalanced Trees 中描述的一种查找数据结构&#xff0c;支持对数据的快速查找&#xff0c;插入和删除。 对于 AVL 树、红黑树等平衡树&#xff0c;在插入过…

SkipList(跳跃表)详解

Introduction: skiplist本质上也是一种查找结构&#xff0c;用于解决算法中的查找问题&#xff08;Searching&#xff09;&#xff0c;即根据给定的key&#xff0c;快速查到它所在的位置&#xff08;或者对应的value&#xff09; 一般用于解决查找问题的数据结构分为两个大类…

docker中国镜像

一,如果是像redis,mysql等官方的镜像,直接配置阿里云的镜像就可以 1,注册阿里云账号,并登录 2,打开这个网址 https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors 3,页面上会教怎么设置,如下面的截图 二,如果是私有仓库的镜像 非常感谢原作者:https://www.jiansh…

Docker 使用国内镜像仓库

Docker 使用国内镜像仓库 1、问题描述2、总结 1、问题描述 由于某些原因&#xff0c;导致Docker镜像在国内下载速度特别慢。所以为了沉浸式开发。最好切换为国内源。这里以163 的镜像仓库举例。首先修改/etc/docker/daemon.json配置文件。 sudo vi /etc/docker/daemon.json…

MacOS上配置docker国内镜像仓库地址

背景 docker官方镜像仓库网速较差&#xff0c;我们需要设置国内镜像服务 我的MacOS docker版本如下 设置docker国内镜像仓库地址 点击Settings点击Docker Engine修改配置文件&#xff0c;添加registry-mirrors {"builder": {"gc": {"defaultKeepS…

Docker国内镜像加速地址与详细说明

简介 对于动不动就几百M甚至上G的Docker镜像来说&#xff0c;官方镜像总是掉线或速度极慢&#xff0c;为了改善这种情况&#xff0c;建议切换成国内镜像。常用的国内镜像使用阿里云、网易的居多&#xff0c;本篇内容将记录一下Docker的这些国内镜像是怎么使用的。 国内常用的…

Docker国内镜像

1、下面这些镜像实测基本都用不了。 网易镜像中心&#xff1a;http://hub-mirror.c.163.com daocloud镜像市场&#xff1a;https://hub.daocloud.io 七牛云&#xff1a;https://reg-mirror.qiniu.com Azure&#xff1a;https://dockerhub.azk8s.cn 中科大: https://docke…

docker 国内镜像配置

一、常用镜像地址 1、中国科技大学:https://docker.mirrors.ustc.edu.cn 2、阿里云:https://cr.console.aliyun.com/ 3、Docker中国区官方镜像:https://registry.docker-cn.com 4、网易:http://hub-mirror.c.163.com 5、ustc:https://docker.mirrors.ustc.edu.cn 6、daoclo…

window docker国内镜像设置

刚开始使用的时候&#xff0c;发现因为网络的问题&#xff0c;经常出现镜像下载失败的情况。如下图所示。 这是应为docker服务在国外,直接访问会因为网络原因失败或者特别慢,因此我们可以将将镜像源设置为国内的。 一. 在桌面右下角出有一个docker的图标,鼠标右键点击setings,…

【Docker】Docker 设置国内镜像源_docker国内镜像库

文章目录 1. Docker阿里云镜像加速2. 参考资料 点击跳转&#xff1a;Docker安装MySQL、Redis、RabbitMQ、Elasticsearch、Nacos等常见服务全套&#xff08;质量有保证&#xff0c;内容详情&#xff09; 1. Docker阿里云镜像加速 在国内&#xff0c;从官方的Docker Hub仓库拉取…

docker构建国内镜像服务

在国内想要下载镜像比较困难&#xff0c;因此很多公司都构建自己的私有仓库。如何搭建私有仓库&#xff0c;请参考《docker私有仓库从无到有》。然而即使私有仓库服务构建完成&#xff0c;但是里面没有镜像&#xff0c;一样很苦恼。今天介绍一下如何利用国内云服务商提供的镜像…

电网电压的三相静止对称坐标系和三相电网电压的相量表示法

电网电压的空间电压矢量和电网电压的相量表示这两个概念需要区分清楚。分别参考邱关源的《电路》和张兴的《PWM整流》相关章节。 图2 三相电网电压的相量表示法 电网电压的相量表示&#xff0c;三相相差120度&#xff0c;整体逆时针50HZ旋转&#xff0c;这里的120度是指三分之一…

交流电中为什么要用相量法?

上两节课,电工学了电流和电压的相量表示法,对于复数的引入感觉稀里糊涂的,于是去搜了知乎,一篇文章让我恍然大悟,如果也有不理解的小伙伴可以复制这个,去知乎看详细解答嗷~ https://www.zhihu.com/question/347763932/answer/1103938667 下面👇是我的理解➕概括总结:…

斯泰因梅茨-电路向量法的创始人

施泰因梅茨&#xff08;Steinmetz&#xff0c;Charles Protells&#xff09;德裔美国电机工程师。美国艺术与科学学院院士。1865年4月9日生于德国的布雷斯劳&#xff08;今波兰的弗罗茨瓦夫&#xff09;。1901 &#xff5e;1902 年任美国电机工程师学会主席。1889年迁居美国。他…

相量法

复数 代数形式 三角形式 指数形式 极坐标形式 正弦量 的三要素 峰值&#xff0c;峰峰值 角速度、频率、周期 初相 有效值即 相位差 相量法的基础 则 则 电路定律的相量形式 则 则 则