跳表:Skiplist原理介绍和优缺点

article/2025/8/8 0:34:04

skiplist介绍

  • 不要求上下相邻两层链表之间的节点个数有严格的对应关系,而是为每个节点随机出一个层数(level)。比如,一个节点随机出的层数是3,那么就把它链入到第1层到第3层这三层链表中。为了表达清楚,下图展示了如何通过一步步的插入操作从而形成一个skiplist的过程:

img

  • 如果我们查找23

img

skiplist的算法性能分析

skiplist每次插入都是独立的,根据以下算法(因为random()的随机生成)

执行插入操作时计算随机数的过程,是一个很关键的过程,它对skiplist的统计特性有着很重要的影响。这并不是一个普通的服从均匀分布的随机数,它的计算过程如下:

  • 首先,每个节点肯定都有第1层指针(每个节点都在第1层链表里)。

  • 如果一个节点有第i层(i>=1)指针(即节点已经在第1层到第i层链表中),那么它有第(i+1)层指针的概率为p。

  • 节点最大的层数不允许超过一个最大值,记为MaxLevel。

这个计算随机层数的伪码如下所示:

randomLevel()
level := 1
// random()返回一个[0...1)的随机数
while random() < p and level < MaxLevel do
level := level + 1
return level

randomLevel()的伪码中包含两个参数,一个是p,一个是MaxLevel。在Redis的skiplist实现中,这两个参数的取值为:

p = 1/4
MaxLevel = 32

空间复杂度

在这一部分,我们来简单分析一下skiplist的时间复杂度和空间复杂度,以便对于skiplist的性能有一个直观的了解。如果你不是特别偏执于算法的性能分析,那么可以暂时跳过这一小节的内容。

我们先来计算一下每个节点所包含的平均指针数目(概率期望)。节点包含的指针数目,相当于这个算法在空间上的额外开销(overhead),可以用来度量空间复杂度。

根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。定量的分析如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。

  • 节点层数恰好等于1的概率为1-p。

  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。

  • 节点层数大于等于3的概率为p^2,而节点层数恰好等于3的概率为p^2(1-p)。

  • 节点层数大于等于4的概率为p^3,而节点层数恰好等于4的概率为p^3(1-p)。

  • ......

因此,一个节点的平均层数(也即包含的平均指针数目),计算如下:

img

现在很容易计算出:

  • 当p=1/2时,每个节点所包含的平均指针数目为2;

  • 当p=1/4时,每个节点所包含的平均指针数目为1.33。这也是Redis里的skiplist实现在空间上的开销。

时间复杂度

现在假设我们从一个层数为i的节点x出发,需要向左向上攀爬k层。这时我们有两种可能:

  • 如果节点x有第(i+1)层指针,那么我们需要向上走。这种情况概率为p。

  • 如果节点x没有第(i+1)层指针,那么我们需要向左走。这种情况概率为(1-p)。

这两种情形如下图所示:

img

用C(k)表示向上攀爬k个层级所需要走过的平均查找路径长度(概率期望),那么:

C(0)=0
C(k)=(1-p)×(上图中情况b的查找长度) + p×(上图中情况c的查找长度)

代入,得到一个差分方程并化简:

C(k)=(1-p)(C(k)+1) + p(C(k-1)+1)
C(k)=1/p+C(k-1)
C(k)=k/p

这个结果的意思是,我们每爬升1个层级,需要在查找路径上走1/p步。而我们总共需要攀爬的层级数等于整个skiplist的总层数-1。

那么接下来我们需要分析一下当skiplist中有n个节点的时候,它的总层数的概率均值是多少。这个问题直观上比较好理解。根据节点的层数随机算法,容易得出:

  • 第1层链表固定有n个节点;

  • 第2层链表平均有n*p个节点;

  • 第3层链表平均有n*p^2个节点;

  • ...

所以,从第1层到最高层,各层链表的平均节点数是一个指数递减的等比数列。容易推算出,总层数的均值为log1/pn,而最高层的平均节点数为1/p。

综上,粗略来计算的话,平均查找长度约等于:

  • C(log1/pn-1)=(log1/pn-1)/p

即,平均时间复杂度为O(log n)。

skiplist与平衡树、哈希表的比较

  • skiplist和各种平衡树(如AVL、红黑树等)的元素是有序排列的,而哈希表不是有序的。因此,在哈希表上只能做单个key的查找,不适宜做范围查找。所谓范围查找,指的是查找那些大小在指定的两个值之间的所有节点。

  • 在做范围查找的时候,平衡树比skiplist操作要复杂。在平衡树上,我们找到指定范围的小值之后,还需要以中序遍历的顺序继续寻找其它不超过大值的节点。如果不对平衡树进行一定的改造,这里的中序遍历并不容易实现。而在skiplist上进行范围查找就非常简单,只需要在找到小值之后,对第1层链表进行若干步的遍历就可以实现。

  • 平衡树的插入和删除操作可能引发子树的调整,逻辑复杂,而skiplist的插入和删除只需要修改相邻节点的指针,操作简单又快速。

  • 从内存占用上来说,skiplist比平衡树更灵活一些。一般来说,平衡树每个节点包含2个指针(分别指向左右子树),而skiplist每个节点包含的指针数目平均为1/(1-p),具体取决于参数p的大小。如果像Redis里的实现一样,取p=1/4,那么平均每个节点包含1.33个指针比平衡树更有优势

  • 查找单个key,skiplist和平衡树的时间复杂度都为O(log n),大体相当;而哈希表在保持较低的哈希值冲突概率的前提下,查找时间复杂度接近O(1)性能更高一些。所以我们平常使用的各种Map或dictionary结构,大都是基于哈希表实现的。

  • 从算法实现难度上来比较,skiplist比平衡树要简单得多。

Redis为什么用skiplist而不用平衡树?

在前面我们对于skiplist和平衡树、哈希表的比较中,其实已经不难看出Redis里使用skiplist而不用平衡树的原因了。现在我们看看,对于这个问题,Redis的作者 @antirez 是怎么说的:

There are a few reasons:

\1) They are not very memory intensive. It's up to you basically. Changing parameters about the probability of a node to have a given number of levels will make then less memory intensive than btrees.

\2) A sorted set is often target of many ZRANGE or ZREVRANGE operations, that is, traversing the skip list as a linked list. With this operation the cache locality of skip lists is at least as good as with other kind of balanced trees.

\3) They are simpler to implement, debug, and so forth. For instance thanks to the skip list simplicity I received a patch (already in Redis master) with augmented skip lists implementing ZRANK in O(log(N)). It required little changes to the code.


http://chatgpt.dhexx.cn/article/dKLT5A45.shtml

相关文章

skiplist 跳跃表详解及其编程实现

skiplist介绍 跳表(skip List)是一种随机化的数据结构&#xff0c;基于并联的链表&#xff0c;实现简单&#xff0c;插入、删除、查找的复杂度均为O(logN)。跳表的具体定义&#xff0c; 请参考参考维基百科 点我&#xff0c;中文版。跳表是由William Pugh发明的&#xff0c;这…

浅析SkipList跳跃表原理及代码实现

转载请注明&#xff1a;http://blog.csdn.net/ict2014/article/details/17394259 SkipList在leveldb以及lucence中都广为使用&#xff0c;是比较高效的数据结构。由于它的代码以及原理实现的简单性&#xff0c;更为人们所接受。我们首先看看SkipList的定义&#xff0c;为什么叫…

跳表(skiplist)的理解

听到跳表(skiplist)这个名字,既然是list,那么应该跟链表有关。 跳表是有序链表,但是我们知道,即使对于排过序的链表,我们对于查找还是需要进行通过链表的指针进行遍历的,时间复杂度很高依然是O(n),这个显然是不能接受的。是否可以像数组那样,通过二分法进行查找呢,但…

SkipList详解

本文参考&#xff1a;《大数据日知录》 概念 SkipList是一种用来代替平衡树的数据结构。 虽然在最坏的情况下SkipList的效率要低于平衡树&#xff0c;但是大多数情况下效率仍然非常高&#xff0c;其插入、删除、查找的时间复杂度都是O(log(N))。 除了高效外&#xff0c;其实现…

跳表(skipList)

一、为何有skipList这种数据结构的出现 我们知道二分查找算法之所以能达到 O(logn) 这样高效的一个重要原因在于它所依赖的数据结构是数组&#xff0c;数组支持随机访问一个元素&#xff0c;通过下标很容易定位到中间元素。而链表是不支持随机访问的&#xff0c;只能从头到尾依…

跳表 skiplist 简介

跳表 skiplist 跳表 (Skip List) 是由 William Pugh 在 1990 年发表的文章 Skip Lists: A Probabilistic Alternative toBalanced Trees 中描述的一种查找数据结构&#xff0c;支持对数据的快速查找&#xff0c;插入和删除。 对于 AVL 树、红黑树等平衡树&#xff0c;在插入过…

SkipList(跳跃表)详解

Introduction: skiplist本质上也是一种查找结构&#xff0c;用于解决算法中的查找问题&#xff08;Searching&#xff09;&#xff0c;即根据给定的key&#xff0c;快速查到它所在的位置&#xff08;或者对应的value&#xff09; 一般用于解决查找问题的数据结构分为两个大类…

docker中国镜像

一,如果是像redis,mysql等官方的镜像,直接配置阿里云的镜像就可以 1,注册阿里云账号,并登录 2,打开这个网址 https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors 3,页面上会教怎么设置,如下面的截图 二,如果是私有仓库的镜像 非常感谢原作者:https://www.jiansh…

Docker 使用国内镜像仓库

Docker 使用国内镜像仓库 1、问题描述2、总结 1、问题描述 由于某些原因&#xff0c;导致Docker镜像在国内下载速度特别慢。所以为了沉浸式开发。最好切换为国内源。这里以163 的镜像仓库举例。首先修改/etc/docker/daemon.json配置文件。 sudo vi /etc/docker/daemon.json…

MacOS上配置docker国内镜像仓库地址

背景 docker官方镜像仓库网速较差&#xff0c;我们需要设置国内镜像服务 我的MacOS docker版本如下 设置docker国内镜像仓库地址 点击Settings点击Docker Engine修改配置文件&#xff0c;添加registry-mirrors {"builder": {"gc": {"defaultKeepS…

Docker国内镜像加速地址与详细说明

简介 对于动不动就几百M甚至上G的Docker镜像来说&#xff0c;官方镜像总是掉线或速度极慢&#xff0c;为了改善这种情况&#xff0c;建议切换成国内镜像。常用的国内镜像使用阿里云、网易的居多&#xff0c;本篇内容将记录一下Docker的这些国内镜像是怎么使用的。 国内常用的…

Docker国内镜像

1、下面这些镜像实测基本都用不了。 网易镜像中心&#xff1a;http://hub-mirror.c.163.com daocloud镜像市场&#xff1a;https://hub.daocloud.io 七牛云&#xff1a;https://reg-mirror.qiniu.com Azure&#xff1a;https://dockerhub.azk8s.cn 中科大: https://docke…

docker 国内镜像配置

一、常用镜像地址 1、中国科技大学:https://docker.mirrors.ustc.edu.cn 2、阿里云:https://cr.console.aliyun.com/ 3、Docker中国区官方镜像:https://registry.docker-cn.com 4、网易:http://hub-mirror.c.163.com 5、ustc:https://docker.mirrors.ustc.edu.cn 6、daoclo…

window docker国内镜像设置

刚开始使用的时候&#xff0c;发现因为网络的问题&#xff0c;经常出现镜像下载失败的情况。如下图所示。 这是应为docker服务在国外,直接访问会因为网络原因失败或者特别慢,因此我们可以将将镜像源设置为国内的。 一. 在桌面右下角出有一个docker的图标,鼠标右键点击setings,…

【Docker】Docker 设置国内镜像源_docker国内镜像库

文章目录 1. Docker阿里云镜像加速2. 参考资料 点击跳转&#xff1a;Docker安装MySQL、Redis、RabbitMQ、Elasticsearch、Nacos等常见服务全套&#xff08;质量有保证&#xff0c;内容详情&#xff09; 1. Docker阿里云镜像加速 在国内&#xff0c;从官方的Docker Hub仓库拉取…

docker构建国内镜像服务

在国内想要下载镜像比较困难&#xff0c;因此很多公司都构建自己的私有仓库。如何搭建私有仓库&#xff0c;请参考《docker私有仓库从无到有》。然而即使私有仓库服务构建完成&#xff0c;但是里面没有镜像&#xff0c;一样很苦恼。今天介绍一下如何利用国内云服务商提供的镜像…

电网电压的三相静止对称坐标系和三相电网电压的相量表示法

电网电压的空间电压矢量和电网电压的相量表示这两个概念需要区分清楚。分别参考邱关源的《电路》和张兴的《PWM整流》相关章节。 图2 三相电网电压的相量表示法 电网电压的相量表示&#xff0c;三相相差120度&#xff0c;整体逆时针50HZ旋转&#xff0c;这里的120度是指三分之一…

交流电中为什么要用相量法?

上两节课,电工学了电流和电压的相量表示法,对于复数的引入感觉稀里糊涂的,于是去搜了知乎,一篇文章让我恍然大悟,如果也有不理解的小伙伴可以复制这个,去知乎看详细解答嗷~ https://www.zhihu.com/question/347763932/answer/1103938667 下面👇是我的理解➕概括总结:…

斯泰因梅茨-电路向量法的创始人

施泰因梅茨&#xff08;Steinmetz&#xff0c;Charles Protells&#xff09;德裔美国电机工程师。美国艺术与科学学院院士。1865年4月9日生于德国的布雷斯劳&#xff08;今波兰的弗罗茨瓦夫&#xff09;。1901 &#xff5e;1902 年任美国电机工程师学会主席。1889年迁居美国。他…