学习笔记:徐亦达机器学习:Kalman Filter 卡尔曼滤波——后续推导及代码分析

article/2025/9/22 13:27:28

在开始这个博客之前,首先要感谢一下徐老师。该博客是在观看视频https://www.bilibili.com/video/av24225243/?p=1之后,自己的读书笔记。

言归正传,该博文里面的所有符号体系都是徐老师所用的符号,在此记录一下徐老师最后留下的作业,并且根据徐老师给出的demo,结合kalman的推导进行简单的分析。

先从t-1时刻update开始有:给定时间[1, t-1]的观测数值y_{1:t-1}(这里是一个 简记,代表y_1, y_2, \cdots, y_{t-1}),状态x_{t-1}的分布为高斯分布,其参数记为:

P(x_{t-1}|y_{1:t-1}) \sim N(\hat{\mu}_{t-1}, \hat{\Sigma}_{t-1})

part1

part2

注:第一页最后缺少一个转置符号

现在推导完成了predict和update的过程,那么看一下徐老师给的MATLAB代码:

kalman filter的精华就在这里了,S和K在我们推导中已经进行了说明。

这里面有两个现成的高斯分布的公式,看上去是那么一回事,但是不知道其来龙去脉,后面有时间再进行高斯分布特性【1】和【2】的研究,后续再补上了。当然在这里也希望有这方面教程的朋友们多给指点,推荐一个好的教程。

 


http://chatgpt.dhexx.cn/article/eNxKGVLG.shtml

相关文章

徐亦达 概率模型学习 : hmm

引出: 条件概率 理解为 一对应无限 的函数 上的一个自变量点的情况 p ( x ∣ y ) p(x|y) p(x∣y)是有多种解释的 或者 是隐含了具体应用情况的, 以下内容大概在说: 条件概率 p ( x ∣ y ) p(x|y) p(x∣y) 是 一对应无限映射x(y) 的 一种数学定量描述办法…

【算法】狄利克雷过程 (Dirichlet过程)

本小节是层次狄利克雷过程的笔记。 狄利克雷混合模型DPMM是一种可以自动确定聚类类别数量的聚类方法。 狄利克雷过程DP是“分布的分布”,由2个参数和确定,即。其中是分布参数,值越大,分布越接近于均匀分布,值越小&am…

吴恩达机器学习讲义_悉尼科大徐亦达教授:1000+页机器学习讲义,32 份主题推介...

新智元推荐 来源:专知(ID:Quan_Zhuanzhi) 【新智元导读】悉尼科大徐亦达教授机器学习讲义,总共涵盖 32 个主题,1000页讲义,包括Softmax算法、传统GAN,W-GAN数学,贝叶斯GAN, 蒙托卡罗树搜索,alphaGo学习算…

首发:徐亦达老师的机器学习课件及下载(中文目录)

徐亦达教授在github公布了他的历年机器学习相关课件、视频,黄海广博士协助徐亦达老师对课件目录进行翻译和整理,并提供下载。 徐亦达老师简介 徐亦达,现任悉尼科技大学教授,UTS全球数据技术中心机器学习和数据分析实验室主任。主要…

【资源】首发:徐亦达老师的机器学习课件及下载(中文目录)

徐亦达教授在github公布了他的历年机器学习相关课件、视频,黄海广博士协助徐亦达老师对课件目录进行翻译和整理,并提供下载。 徐亦达老师简介 徐亦达,现任悉尼科技大学教授,UTS全球数据技术中心机器学习和数据分析实验室主任。主要…

徐亦达 概率模型学习 : gmm

单高斯分布 MLE posterior 正比例于 likelihood * prior p ( θ ∣ x ) ∝ p ( x ∣ θ ) ∗ p ( θ ) p(\theta | x) \propto p(x|\theta) * p(\theta) p(θ∣x)∝p(x∣θ)∗p(θ) 参数 θ 的后验分布 ∝ 参数 θ 表示的 x 分布上已知样本有多大概率 ∗ 参数 θ 的先验分布…

首发:徐亦达教授团队最新发表的两篇机器学习论文

徐亦达团队在 Asian Conference on Machine Learning 的发表了两篇机器学习论文,本人得到徐老师授权在本站发布论文。 论文 1:Realistic Image Generation using Region-phrase Attention论文 2:Efficient Diversified Mini-Batch Selection …

隐马尔科夫模型(HMM)算法的理解与超详细推导

今天看了徐亦达教授的HMM讲解,感觉有所收获,并将隐马尔科夫模型算法的推导整理了一下,帮助大家一起理解这个算法。首先我们通过一个股票的案例来引入这个算法,我们来看看这个股票行情和涨跌观测值的一个状态图: 由图中…

python高级在线题目训练-第一套

单选 1、运行下列代码后,a的值为( C )。 myList "Hello World" a myList[3:8] A. llo W B. llo Wo C. lo Wo D. o Wor 2、下列代码的运行结果为( C )。 A.26,73,47,90, B.26,73,47,90 C.26,73,47,18, D.26,73,47,18 3、以下哪个选项可以创建一个范围…

DSP 投放的基本流程和算法

DSP 投放的基本流程和算法 DSP 在进行投放的时候通常按照如下流程: 步骤1:识别用户: DSP 系统通常会在广告展示的时候,同时放置一个检测点,这样当互联网用户第一次访问 广告主的网站时,就会种下一个cookie,这样DSP就可…

Go框架,库和软件的精选列表

2018最新精选的Go框架,库和软件的精选列表 一 https://awesome-go.com/ 2018最新精选的Go框架,库和软件的精选列表 二 https://awesome-go.com/ 2018最新精选的Go框架,库和软件的精选列表 三 https://awesome-go.com/ 2018最新精选的Go框架…

[Pyhon疫情大数据分析] 四.微博话题抓取及新冠肺炎疫情文本挖掘和情感分析

思来想去,虽然很忙,但还是挤时间针对这次肺炎疫情写个Python大数据分析系列博客,包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。希望该系列线上远程教学对您有所帮助,也希望早点战胜病毒,武汉…

大数据的常见业务问题和业务场景

概述 搜索引擎概述 桥梁——引导用户找到所求满足用户需求的过程连接人与内容、人与服务 爬虫:数据收集中心,互联网世界的缩影索引系统:分析整理爬虫收集到的资源,为检索系统提供数据检索系统:从预处理好的资源中挑选…

常用数据分析指标和术语

按照以下三类进行汇总。 1、互联网常用名词解释 2、统计学名词解释 3、数据分析名词解释 一、互联网常用名词解释 1、PV(Page View)页面浏览量 指某段时间内访问网站或某一页面的用户的总数量,通常用来衡量一篇文章或一次活动带来的流量…

GoogLeNet论文阅读,代码实现(Inception系列)

文章目录 GoogLeNet(Inception v1)个人理解总结本篇论文主相对于AlexNet和VGG有三处改进(不同)1、在inception块中引入了11卷积2、将第一层全连接层替换为global-averge-pooling3、利用inception近似稀疏数据结构4、引入辅助分类层 代码(GoogeLeNet结构实现&#xf…

“Python小屋”1300篇历史文章分类速查表

总体说明: 各分类中的文章是按发布时间逆序排列的,动态更新。公众号所有代码均可作为教学案例,转载请注明出处,请勿用作商业用途。 快速查找历史文章的方法:1)单击本文右上角的按钮“...”,然后…

100个数据分析常用指标和术语

大家好,我是辰哥~ 有个朋友是金融行业产品经理,最近在对已有的站内用户做分层与标签分类,需要对用户进行聚类分析。一般从事数据分析行业的朋友对这类词并不陌生,但是像市场运营人员就会把这类些名词概念搞混,导致结果…

TF使用例子-情感分类

北京站 | NVIDIA DLI深度学习培训 2018年1月26日 NVIDIA 深度学习学院 带你快速进入火热的DL领域 阅读全文 正文共10052个字,4张图,预计阅读时间26分钟。 这次改写一下,做一个简单的分类模型和探讨一下hidden layer在聚类的应用场景下会有什…

计算机视觉(五)

Bag of features,简称Bof,中文翻译为“词袋”,是一种用于图像或视频检索的技术。而检索就要进行比对。两幅不同的图像如何比对,比对什么,这就需要提炼出每幅图像中精练的东西出来进行比较。 一、Bag of features算法基…

Eastmount博客导读:专栏系统分类和博客归纳总结

为了更好地帮助博友学习作者的博客,方便作者自己归纳总结专栏,本文详细介绍了作者八年来,在CSDN写的各种专栏,各种系列文章。八年来,作者经历了从本科到硕士,到贵州教书成家,再到现在的博士。八…