第十七章 优先队列优化Dijkstra算法

article/2025/9/16 2:20:41

第十七章 优先队列优化Dijkstra算法

  • 一、普通dijkstra算法的缺陷
    • 1、选出最小距离的过程:
    • 2、松弛所有点的过程:
  • 二、如何优化
    • 1、代码模板
      • (1)问题:
      • (2)模板:
    • 2、详细解读
  • 三、优化分析
    • 1、使用条件:
    • 2、常见问题:
      • (1)重边的处理
      • (2)时间复杂度

一、普通dijkstra算法的缺陷

作者在这里建议,不太懂dijkstra算法的同学可以去看看作者对该算法的详细讲解以及通俗证明,这样大家就能够体会到原算法的缺陷。
传送门:第十六章 Dijkstra算法的讲解以及证明(与众不同的通俗证明)

1、选出最小距离的过程:

     int t=-1;for(int j=1;j<=n;j++){if(!s[j]&&(t==-1||dis[j]<dis[t]))t=j;}

我们的dijkstra算法会选出所有松弛后所得距离的最小值。而我们之前的代码是遍历所有点来确定的,时间复杂度是O(N)。那么取出n个最小的点,时间复杂度就是O(N2)。

但是我们知道,我们在一堆数中选出一个最小值,只需要使用我们之前学过的数据结构:堆。假设我们选出一个最小值,那么堆选出这个值的时间复杂度是O(logN)。由于我们要求所有的点的最短路,所以我们要取出n个点,那么取出n个点的时间复杂度很多人认为是O(nlogn),其实这是一个很大的误区,因为随着你取出的点的增多,你的堆的高度在减少,那么我们取出n个最小的点需要的时间复杂度是多少呢?

取出n个数的时间复杂度其实就是插入n个数的时间复杂度,并不是nlogn,而是O(N)
推导如下:
在这里插入图片描述

数据结构堆就是STL中的优先队列:priority_queue

2、松弛所有点的过程:

        for(int j=1;j<=n;j++){dis[j]=min(dis[j],g[t][j]+dis[t]);}

通过我们第十五章对dijkstra算法的证明,我们发现,每次松弛过程得到有效更新的点,都是我们中间点的邻接点。也就是说,我们只需要去松弛该点的邻接点即可,不用去松弛所有点。因此,我们只需要去松弛该点的邻接点。那么这个时候,我们用邻接表就会便于我们去访问了。因为邻接表中将一个点的所有邻接点都记录在了链表中。我们只需要遍历对应点的链表即可。

二、如何优化

1、代码模板

(1)问题:

在这里插入图片描述

(2)模板:

#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int N=1e6+10;
int h[N],e[N],ne[N],idx,w[N];
bool s[N];
int dis[N];
int n,m,a,b,c;
void add(int a,int b,int c)
{e[idx]=b;ne[idx]=h[a];w[idx]=c;h[a]=idx++;
}
int dijkstra()
{memset(dis,0x3f,sizeof dis);dis[1]=0;priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>>q;q.push(make_pair(0,1));while(!q.empty()){auto t=q.top();q.pop();if(s[t.second])continue;s[t.second]=true;for(int i=h[t.second];i!=-1;i=ne[i]){if(dis[e[i]]>t.first+w[i]){dis[e[i]]=t.first+w[i];q.push({dis[e[i]],e[i]});}}}if(dis[n]==0x3f3f3f3f)return -1;else return dis[n];
}
int main()
{memset(h,-1,sizeof h);cin>>n>>m;while(m--){scanf("%d%d%d",&a,&b,&c);add(a,b,c);}cout<<dijkstra();return 0;
}

2、详细解读

在这里插入图片描述

三、优化分析

1、使用条件:

我们这道题中的图是稀疏图,所以我们可以使用邻接表,从而优化这个代码。但是要是稠密图的话,我们可能还是需要用邻接矩阵来存储,这样的话一般使用的是朴素的dijkstra算法。

2、常见问题:

(1)重边的处理

我们的邻接矩阵存储图的时候,会通过min函数存储重边中的最小边。但是我们的邻接表会存储所有重边。这其实是没关系的。比如我们a,b点内存储了3,1,2。三个长度的边。一开始可能会让3+x这个距离进堆,但是我们当再次遍历到1这个边,松弛成功后我们就会让1+x进堆。而1+x存在后,3+x就不会成堆顶,所以就不会对结果产生影响。那么当我们的1+x出堆后,说明这个点的最短路已经确定了。那么我们直接标记一下,所以当1+x删除后,轮到3+x出堆的时候,由于我们已经标记了。所以通过continue就可以直接删除3+x这个数据。而后续的2+x也会在轮到它出堆的时候,删除掉。

(2)时间复杂度

寻找路径最短的点(取出n个最小值的过程):O(n)

加入集合ST:O(n)

更新距离:O(mlogn)

所以总的时间复杂度是:O(mlogn)


http://chatgpt.dhexx.cn/article/eG0qPB5g.shtml

相关文章

【自顶向下模块化编程】C语言实现多级反馈队列调度算法

自顶向下-多级反馈队列 多级反馈队列算法算法原理算法描述题目摘要 自顶向下模块化设计整体框架具体实现GeneratorSchedulerExecutor 整体代码实现 总结及心得总结心得 多级反馈队列算法 多级反馈队列调度算法是一种CPU处理机调度算法&#xff0c;UNIX操作系统采取的便是这种调…

[算法] 栈和队列

欢迎来到老胡的算法解题思路&#xff0c;本文章主要使用的语言为java&#xff0c;使用的题型为力扣算法题&#xff0c;基于这一篇文章&#xff0c;我将为你介绍栈和队列的基础知识和栈和队列的题型&#xff0c;喜欢的朋友可以关注一下&#xff0c;下次更新不迷路&#xff01; 目…

十道经典面试算法真题详解

前言 分享一下 腾讯常考的十道算法题&#xff08;真题&#xff09;。在金三银四&#xff0c;希望对大家有帮助呀。 重排链表 最长递增子序列 环形链表 反转链表 最长回文子串 全排列 LRU 缓存 合并K个升序链表 无重复字符的最长子串 删除链表的倒数第 N 个结点 1. …

队列相关习题

1.已知循环队列存储在一维数组A0…n-1]中&#xff0c;且队列非空时front和rear分别指向队头元素和队尾元素。若初始时队列为空&#xff0c;且要求第一个进入队列的元素存储在A[0]处&#xff0c;则初始时front和rear的值分别是( )。 A.0&#xff0c;0 B. 0&#xff0c;n-1 C. n-…

java算法面试题_Java算法面试题汇总

原标题&#xff1a;Java算法面试题汇总 1. 字符串 如果IDE没有代码自动补全功能&#xff0c;所以你应该记住下面的这些方法。 toCharArray() // 获得字符串对应的char数组 Arrays.sort() // 数组排序 Arrays.toString(char[] a) // 数组转成字符串 charAt(int x) // 获得某个索…

详解单调队列算法

前言 嘿!彩蛋!感觉有帮助就三连呗! 如果你对这篇文章可感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。 在上一篇文章中,我们介绍了「单调栈」这一最常考察的线性数据结构。而今天我们将继续沿着这个思路,介绍另…

栈和队列相关经典算法题总结(数据结构+C语言)

我们这里针对栈和队列的一些经典算法题做详细讲解: 1.括号匹配问题. 2.用队列实现栈. 3.用栈实现队列. 4.设计循环队列. 一.详细讲解如下: 1.括号匹配问题.(如下图) 给定一个只包括 (&#xff0c;)&#xff0c;{&#xff0c;}&#xff0c;[&#xff0c;] 的字符串 s &am…

qt使用消息队列服务器,qt代码实现消息队列通信

qt代码实现消息队列通信 内容精选 换一换 HBase 1.X版本在RPC流程中&#xff0c;多个数据通信线程会争抢同一个缓存Buffer队列&#xff0c;代码以lock重入锁实现线程安全&#xff0c;锁抢占严重&#xff0c;导致HBase不能充分发挥CPU多核的能力。HBase 1.X版本的RPC通信机制中B…

消息队列MQ常见面试题

面试官在面试候选人时&#xff0c;如果发现候选人的简历中写了在项目中使用了 MQ 技术&#xff08;如 Kafka、RabbitMQ、RocketMQ&#xff09;&#xff0c;基本都会抛出一个问题&#xff1a;在使用 MQ 的时候&#xff0c;怎么确保消息 100% 不丢失&#xff1f; 这个问题在实际…

RabbitMQ消息队列常见面试题总结

1、什么是消息队列&#xff1a; 1.1、消息队列的优点&#xff1a; &#xff08;1&#xff09;解耦&#xff1a;将系统按照不同的业务功能拆分出来&#xff0c;消息生产者只管把消息发布到 MQ 中而不用管谁来取&#xff0c;消息消费者只管从 MQ 中取消息而不管是谁发布的。消息…

【消息队列】面试题及答案整理

消息队列面试题 为什么要使用消息队列/消息队列的应用场景使用了消息队列会有什么缺点如何保证消息队列是高可用的RocketMQ是如何保证消息队列是高可用的 如何保证消息不被重复消费/如何保证消息消费的幂等性如何保证消费的可靠性传输RocketMQ如何保证消费的可靠性传输RabbitMQ…

JAVA——快速排序(详细)

JAVA快速排序的实现 快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高&#xff0c;因此经常被采用&#xff0c;再加上快速排序思想----分治法也确实实用&#xff0c;因此很多软件公司的笔试面试&#xff0c;包括像腾讯&#xff0c;微软等知名IT公司都喜欢考这个&…

快速排序算法(java实现)

基本思想 快速排序是一种采用分治法解决问题的一个典型应用&#xff0c;也是冒泡排序的一种改进。它的基本思想是&#xff0c;通过一轮排序将待排记录分割成独立的两部分&#xff0c;其中一部分均比另一部分小&#xff0c;则可分别对这两部分继续进行排序&#xff0c;已达到整…

java快速排序(含快速排序代码)

目录 一&#xff1a;快速排序思想 二&#xff1a;快速排序代码&#xff08;pivot一定时先和arrays【r】先比较&#xff09; 三&#xff1a;结果 一&#xff1a;快速排序思想 假设我们现在对“6 1 2 7 9 3 4 5 10 8”这个10个数进行排序。首先在这个序列中随便找一个数作为基准…

快速排序 Java 实现

概念 快速排序&#xff08;Quicksort&#xff09;是对冒泡排序的一种改进。 参考: [数据结构与算法(Kotlin语言)]1.冒泡排序&#xff08;Bubble Sort&#xff09; 快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略&#xff0c;通常称其为分治法(…

java快速排序详解

文章目录 一、快排原理二、实例操作三、实战代码四、总结 一、快排原理 从待排序区间选择一个数&#xff0c;作为基准值&#xff08;pivot&#xff09;&#xff1b;遍历整个待排序区间&#xff0c;将比基准值小的&#xff08;可等于&#xff09;放到基准值左边&#xff0c;将比…

快速排序Java

基本思想 快速排序的基本思想&#xff1a;通过一趟排序将待排记录分隔成独立的两部分&#xff0c;其中一部分记录的关键字均比另一部分的关键字小&#xff0c;则可分别对这两部分记录继续进行排序&#xff0c;以达到整个序列有序。 算法描述 快速排序使用分治法来把一个串&…

快速排序 Java模板

快速排序Java模板 详情参考 https://www.acwing.com/problem/content/787/ https://www.acwing.com/solution/content/2096/ 快速排序的整体过程&#xff0c;动态变化流程 以从小到大排序为例 选择一个目标参考值 p i v i t pivit pivit&#xff0c;通常课本上会说选择数组…

java 实现快速排序

1.介绍 快速排序是对冒泡排序的一种改进。它的基本思想是&#xff1a;通过一趟排序将要排序的数据分割成独立的两部分&#xff0c;其中一 部分的所有数据都比另外一部分的所有数据都要小&#xff0c;然后再按此方法对这两部分数据分别进行快速排序&#xff0c;整个排序 过程可以…

使用 Java 实现快速排序(详解)

一、概述 最近在看一些面试题&#xff0c;发现很多面试过程中都会要求手写快速排序&#xff0c;查阅一些博客发现别人写的并不是特别清楚而且也很难记住&#xff0c;所以为了更好的掌握这个算法&#xff0c;所以在这篇文章中&#xff0c;将自己的学习过程记录下来&#xff0c;…