图神经网络和常见的神经网络的区别

article/2025/9/20 9:12:28

GNN-Graph Neural Networks

  • 0 前言
  • 1 图神经网络和以往深度学习的区别
  • 2 图神经网络的特点

参考知乎:https://zhuanlan.zhihu.com/p/136521625

0 前言

图神经网络有很多比较好的综述:

1、Graph Neural Networks: A Review of Methods and Applications.
2、A Comprehensive Survey on Graph Neural Networks
3、Deep Learning on Graphs: A Survey

更多的论文可以参考清华大学整理的GNN paper list 。

1 图神经网络和以往深度学习的区别

以往:随着机器学习、深度学习的发展,语音、图像、自然语言处理逐渐取得了很大的突破,然而语音、图像、文本都是很简单的序列或者网格数据,是很结构化的数据,深度学习很善于处理该种类型的数据
1现实世界:并不是所有的事物都可以表示成一个序列或者一个网格,例如社交网络、知识图谱、复杂的文件系统等,也就是说很多事物都是非结构化的。
2
相比于简单的文本和图像,这种网络类型的非结构化的数据非常复杂,处理它的难点包括:

  • 图的大小是任意的,图的拓扑结构复杂,没有像图像一样的空间局部性
  • 图没有固定的节点顺序,或者说没有一个参考节点
  • 图经常是动态图,而且包含多模态的特征

那么对于这类数据我们该如何建模呢?能否将深度学习进行扩展使得能够建模该类数据呢?这些问题促使了图神经网络的出现与发展。

2 图神经网络的特点

相比较于神经网络最基本的网络结构全连接层(MLP),特征矩阵乘以权重矩阵,图神经网络多了一个邻接矩阵。计算形式很简单,三个矩阵相乘再加上一个非线性变换。
3因此一个比较常见的图神经网络的应用模式如下图,输入是一个图,经过多层图卷积等各种操作以及激活函数,最终得到各个节点的表示,以便于进行节点分类、链接预测、图与子图的生成等等任务。

4上面是一个对图神经网络比较简单直观的感受与理解,实际其背后的原理逻辑还是比较复杂的。


http://chatgpt.dhexx.cn/article/OZZ75rNY.shtml

相关文章

图神经网络(Graph Neural Networks)

图神经网络(Graph Neural Network)在社交网络、推荐系统、知识图谱上的效果初见端倪,成为近2年大热的一个研究热点。然而,什么是图神经网络?图和神经网络为什么要关联?怎么关联? 本文简单介绍GN…

图神经网络综述

文章目录 1 简介 1.1 GNN简史1.2 GNN的相关研究1.3 GNN vs 网络嵌入1.4 文章的创新性2 基本的图概念的定义3 GNN分类和框架 3.1 GNNs分类3.2 框架4 图卷积网络 4.1 基于图谱的GCN 4.1.1 图信号处理4.1.2 基于谱的GCN方法4.1.3 总结4.2 基于空间的GCN 4.2.1 基于循环的空间GCNs…

什么是图神经网络 (GNN)?

图表无处不在。您的社交网络是人和关系的图表。你的家人也一样。您从 A 点到 B 点所走的道路构成了一个图形。将这个网页连接到其他网页的链接形成了一个图表。当您的雇主向您付款时,您的付款会通过金融机构的图表。 基本上,由链接实体组成的任何东西都…

图神经网络,这到底是个什么?

摘要:图神经网络是一种基于图结构的深度学习方法。 1、什么是图神经网络 图神经网络(Graph Neu做ral Networks, GNNs)是一种基于图结构的深度学习方法,从其定义中可以看出图神经网络主要由两部分组成,即“图”和“神经…

图学习笔记(三):图神经网络

图学习笔记(三):图与图学习 回顾六. 图神经网络(Graph Neural Networks)一、 什么是图神经网络二、 有哪些图神经网络符号定义1. 图卷积网络(Graph Convolution Networks,GCNs)GCN方…

图神经网络(一):综述

文章目录 1.背景介绍1)图简介2)图神经网络简介 2.GNN 的通用设计流程1) 查找图结构2)明确图类型和规模3)设计损失函数4)构造模型 3.计算模块的实例化3.1 传播模块——卷积算子(convolution operator&#x…

图神经网络(Graph neural networks)综述

论文链接:Graph Neural Networks: A Review of Methods and Applications Abstract:图(Graph)数据包含着十分丰富的关系型信息。从文本、图像这些非结构化数据中进行推理学习,例如句子的依赖树、图像的场景图等&#…

什么是图神经网络?

什么是图神经网络? 更多精彩内容: https://www.nvidia.cn/gtc-global/?ncidref-dev-876561 GNN 将深度学习的预测能力应用于丰富的数据结构,这些数据结构将对象及其关系描述为图中由线连接的点。 当两种技术融合时,它们可以创造出新奇而美…

图神经网络(GNN)简述

目录 一、什么是图(graph) 二、如何将图片(images)表示成图(graph) 三、在机器学习中使用图(graph)的挑战 四、图神经网络(Graph Neural Network, GNN) (I). The simplest GNN (II). 如何做预测 (III).如何将图的结构信息引入GNN (IV).Learning edge representations (V). 为什…

什么是图神经网络

2019年可以说是图神经网络元年。 01 什么是图神经网络? 1. 图和属性图 要了解图神经网络,首先要了解图。图是由节点和边组成的,如下图所示。一般图中的节点表示实体对象(比如一个用户、一件商品、一辆车、一张银行卡等都可以作…

图神经网络初探

介绍 随着图神经网络(Graph Neural Networks,GNN)热潮的出现,了解、掌握图神经网络相关原理以及应用相关技术越来越成来从事人工智能人员的必要条件。本文主要概述图神经网络的概念、相关模型、经典应用,经过本文的学习…

图神经网络的介绍

近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图神经网络已经成为各大深度学习顶会的研究热点。GNN处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语…

机器学习笔记 - 什么是图神经网络?

一、图神经网络GNN概述 机器学习的力量正在被用来解决一系列不同领域中日益复杂的问题。模型需要识别和理解更抽象的概念和对象,并且在许多情况下做出非线性决策。尽管它们本身很强大,但更传统的机器学习模型类型缺乏准确映射和处理一些最复杂问题的能力。 人工神经网络越来越…

【图神经网络实战】深入浅出地学习图神经网络GNN(下)

文章目录 一、Graph Attention Network1.1 图注意力机制作用与方法1.2 Attention计算1.3 Graph Attention 做了什么 二、序列图神经网络TGCN2.1 序列图神经网络TGCN的应用2.2 序列图神经网络细节(实例:交通流量预测)2.2.1 交通场景示意图2.2.…

【图神经网络实战】深入浅出地学习图神经网络GNN(上)

文章目录 一、图神经网络应用领域1.1 芯片设计1.2 场景分析与问题推理1.3 推荐系统1.4 欺诈检测与风控相关1.5 知识图谱1.6 道路交通的流量预测1.7 自动驾驶(无人机等场景)1.8 化学,医疗等场景1.9 物理模型相关 二、图神经网络基本知识2.1 图…

pytorch开发工具

学习目标: 1、pycharm 安装 2、jupter安装 学习内容: 1、pycharm 安装 官网地址: https://www.jetbrains.com/pycharm/download/#sectionwindows 点击安装 选择环境变量: 验证: 2、jupyter安装 进入pytorch 环…

PyTorch 简介

PyTorch 简介 概述PyTorch 是什么Why? PyTorch安装 概述 PyTorch API 文档 PyTorch 是什么 PyTorch 是一个提供两个高级功能的 python 包: 具有强 GPU 加速度的张量计算 (如 numpy)深层神经网络建立在基于磁带的自动调整系统上 注: PyTorch 中的 Torch 和 TensorFlow 中的…

国内官网下载pytorch(GPU版)

国内官网下载GPU版pytorch 用官网conda下载坑换清华镜像源的坑使用官网pip3下载成功 看完了吴恩达的深度学习,然后去B站看李沐的卷积神经网络的代码实现,由于之前学习阶段搭建的环境有点混乱,想着自己能科学上网就打算直接卸载anaconda中的环…

Python Pytorch

学习基础知识 大多数机器学习工作流程都涉及处理数据、创建模型、优化模型参数和保存经过训练的模型。本教程向您介绍在 PyTorch 中实现的完整 ML 工作流,并提供链接以了解有关每个概念的更多信息。 我们将使用 Fashion MNIST 数据集来训练一个神经网络&#xff0c…

PyTorch教程中文版

原文:Welcome to PyTorch Tutorials — PyTorch Tutorials 1.12.0cu102 documentation​​​​​​ 中文翻译,加个人总结,便于理解与回顾。 前置知识:python、神经网络 目录 基础概念: 张量Tensors: te…