Stable Diffusion、ChatGPT爆火的背后!

article/2025/1/23 16:31:39

751363438c33df97c0856b2ba57a9539.gif

整编 | Carol

参考 |《AIGC 发展趋势报告 2023》

出品 | AI科技大本营

“Generative AI(生成式AI)有什么社会价值?”

当腾讯研究院的研究员将上面这个问题输入到ChatGPT中,得到如下回复:

"生成式AI是一种人工智能技术,它可以使用训练数据来生成新的内容。这种技术可以用来解决各种问题,具有很高的社会价值。

例如,它可以用来生成文本、图像、音频和视频,这些内容可以用来帮助人们了解世界,也可以用来提高工作效率。

此外,生成式AI还可以用来解决一些非常复杂的问题,比如提供新的医疗方案、帮助制定更有效的政策、或者甚至帮助人类更好地了解自己。

总的来说,生成式AI为人类提供了很多有价值的机会,有助于人类更好地理解世界,并创造出更多的价值。”

在以上ChatGPT的四段回答中,首先给出了定义(是什么和做什么),然后说明为什么要使用它,包括举例和和强调重要性。最后,还进行了价值理念的归纳和升华。实话说,如果我们问一个对AI有所了解的人类,很大可能也回答不出这样内容完备和逻辑条理的答案,或许这就是以ChatGPT等为代表的生成式AI之所以震撼业界的原因。

d454b92e4c26a1bf03da020dfe24dabd.png

这一次,AIGC能掀起人工智能的产业革命吗?

不过,人工智能自诞生的七八十年来,带给人们的惊叹多了去了。从早期研究积木世界到最早的智能机器人Shakey,再到上世纪八十年代深蓝战胜国际象棋冠军卡斯帕罗夫,直至最近几年的AlphaGo战胜世界围棋冠军,人形机器人Atlas的后空翻和机器狗Spot的连滚翻……AI技术从来不缺让人震撼的元素,但真正能够产业化落地的却少之又少。正因如此,谷歌这些年也收敛了败家烧模式,开始讲起Responsible AI的故事。

相较谷歌,OpenAI是一家小公司,不过背后却有世界首富马斯克和巨头微软的背书。从2016年6月宣布以制造通用机器人和使用自然语言的聊天机器人作为公司发展目标后,便开始了GPT语言模型的研究。

不过,真正让OpenAI火出圈的是在2021年推出的DALL-E,加上后来Stable Diffusion的开源,文生图率先掀起了AIGC的热浪,伴随而来的是大语言模型ChatGPT火爆全网。尽管业界原本的期待是进化版模型GPT-4,但GPT-3衍生而来的ChatGPT还是给到人们不少意外之喜。除了如前文所示的对答如流,在检查程序代码上也丝毫不含糊。

那么,以DALL-E、ChatGPT等为代表的生成式大模型真能掀起人工智能的产业革命吗?如果是历经了人工智能各流派兴衰的产业界老人,可能多少会持有怀疑的态度。但对于后生代的巨头科技企业和新时代的AI开发者来说,将会抱持更大的期待。

163e7cc614d4d118ead79bfae05bead7.png

游戏设计师杰森•艾伦使用Midjourney模型

生成的《太空歌剧院》是首个获奖的AI生成艺术

当然,愿望虽好,AIGC能否真正完成变革,还需要从技术工程化、产业生态化,以及机遇和挑战等方面来进行多维度分析。腾讯研究院在近日发布了《AIGC 发展趋势报告 2023》(以下简称《报告》),对AIGC的发展趋势进行了深度解读。

bbc6535a6960751bab9ac770be7ee2a0.png

技术工程化:哪些Buff让AIGC走向巅峰?

ChatGPT、DALL-E、Stable Diffusion们如此牛X,它们的背后有哪些技术?

《报告》中将其归纳为三点:

  • 生成算法

  • 预训练模型

  • 多模态

生成算法

生成算法并非新技术,2014年由伊恩•古德费洛最早提出生成对抗网络(Generative Adversarial Network,GAN )是最早的生成式模型。之后,进一步出现了Transformer、Diffusion等深度学习生成算法,下表为生成式算法的演进时间轴。

db19ad882abe3a8a2a5a716720ed0221.png

87c82b2962a3486017805b3f4a25bba9.png

图片来源:《AIGC 发展趋势报告 2023》

可以说,AIGC背后的三个最重要的算法模型就是GAN、Transformer和Diffusion。GAN的重要性体现在最早推出,衍生了许多流行架构和变种,还有大量科学家和研究人员在使用这一模型。Transformer则是因为应用领域的广阔,包括NLP、CV 等领域的应用。后来出现的BERT、GPT-3、LaMDA等预训练模型都是基于Transformer模型建立的。Diffusion则因为最优化模型性能的表现,包括灵活的模型架构和精确的对数似然计算,让其成为最先进的图像生成模型。

预训练模型

在《报告》中,是这样形容预训练的重要性的:预训练模型引发了 AIGC技术能力的质变。之所以称为“质变”,正因此后基于大量数据训练、拥有巨量参数成为AIGC实现多任务、多语言、多方式的核心驱动力。

预训练开始的标志性事件是谷歌在2018年发布基于Transformer的机器学习方法BERT,自此AI进入大炼模型参数的预训练时代。由谷歌掀起的这场预训练旋风也拉起了一帮AI巨头和独角兽们的热情参与,下表是主要的AIGC预训练模型。

79702cd1036f6ce6643f51cf1240618e.png

图片来源:《AIGC 发展趋势报告 2023》

多模态

除了生成算法和预训练,AIGC 要达成工程化也少不了多模态。在这点上,CLIP的重要性就体现出来了。2021年,OpenAI团队将跨模态深度学习模型 CLIP进行了开源,能够将文字和图像进行关联。这样一来,就从早期的单NLP、CV模型,扩展到语言文字、图形图像、音视频等多模态、跨模态模型。

79555587c1765fe3495a30e26b9f856a.png

产业生态化:上、中、下游,看MaaS如何加持

生成算法、预训练模型、多模态让AIGC实现工程化,但一项技术能否真正撬动市场,还需要看它能否产业化。

在如何构建产业化上,《报告》给出的结论是:AIGC产业生态加速形成和发展,走向模型即服务(MaaS)的未来。

这些年来,SaaS(软件即服务)、PaaS(平台即服务)和IaaS(基础设施即服务)我们听了很多,当模型也变成一种服务之后,AIGC的产业未来会呈现出怎样的形态?

634c20093f0797e61c54f998b34d5cf0.png

图片来源:《AIGC 发展趋势报告 2023》

如上图所示,从左到右依次是基础层、中间层和应用层。

基础层

首先,在产业的底层架构上,需要有以预训练模型为基础搭建的AIGC技术基础设施。和其他所有技术一样,基础层是最考验技术发展程度和可投入成本的地方,具有较高的进入门槛。据Alchemy API创始人Elliot Turner推测,训练GPT-3的成本可能接近1200万美元。所以,能够进入到这一层的企业主要是头部科技企业和科研机构。

除了背靠微软不差钱的OpenAI,Stability.ai能够成为基础设施型公司也在于不断有资金注入,就在三个月之前,这家公司又获得了1.01亿美元的融资。

基础设施的获利方式主要是通过受控的api调用进行收费,或者以开源为主,然后通过开发和销售专业版和定制版实现商业获利。

中间层

中间层主要是垂直化、场景化、个性化的模型和应用工具。基础层的作用体现在提供通用模型训练平台,中间层的作用则是从通用调试和训练中快速抽取生成场景化、定制化、个性化的小模型和应用工具,这一层的目的在于实现不同行业、垂直领域、功能场景的工业流水线式部署。

事实上,目前已经有不少团队开始基于AIGC的基础平台进行二次开发,比如二次元画风生成器Novel-AI,以及小冰公司通过AIGC生成动画短片。相较通用的AIGC生成器,经过中间层的加工之后,产出的内容产品可以直接提供给终端用户。

应用层

基础层和中间层的应用主要面向B端,到了应用层就直接面向C端了。在这一层上,可以直接生成文字、图片和音视频。不过,相较于B端有更加功能强大的显卡,C端个人用户能否生成高质量的内容很考验消费级显卡的算力。英伟达、AMD、台积电等芯片制造厂商对这个领域的蛋糕也都在虎视眈眈。

12bd259c407785ab18bee34e07485479.png

机遇与挑战:引领AI 2.0变革,仍不能忽视知识产权、伦理等因素

除了技术工程化和产业生态化,衡量AIGC未来发展还需要把控两大方面:机遇和挑战,即当前和潜在的有利及不利因素。

从机遇来看,可以说是非常得多。在《报告》中,从消费端:AIGC牵引数字内容领域的全新变革;到产业端:合成数据牵引人工智能的未来;再到社会端:合成数据牵引人工智能的未来。可以说从人们的生产生活,到社会组织的方方面面都可以有AIGC的参与。

具体表现在:

消费端

  • AIGC正越来越多地参与到数字内容的创意性生成工作,以人机协同的方式释放价值,成为未来互联网的内容生产基础设施;

  • AIGC带来的内容生产方式变革开始引起内容消费模式的变化,未来应用生态和消费市场将走向多样化;

  • 在互联网迈向“在场(3D)”的趋势下,AIGC为3D互联网可以带来包括3D模型、场景、角色制作能效的提升,为创作者激发新的灵感;

9b5990dd8f5f71cc1e32a5f5661ec8ea.png

Epic使用虚幻5引擎和程序化生成技术高效制作

《黑客帝国:觉醒》中的庞大城市(图片来源:知乎用户@王程)

  • 未来随着性能的进一步提升,对话式AIGC在搜索、知识传播等领域有很大的应用空间。聊天机器人和数字人将成为新的、更具包容性的用户交互界面,不断拓展应用领域;

  • 未来元宇宙的大型虚拟空间建设也离不开AIGC的参与,包括核心基础设施技术、数字原生内容的开发等等,通过AIGC可以释放大量包括开发者在内的人力和物力。

产业端

  • 目前人工智能仍然处在发展的1.0阶段(AI 1.0),从AI 1.0走向AI 2.0,数据是最大的掣肘。从真实数据向合成数据的转化,可以推动人工智能迈向 2.0。而AIGC技术的持续创新,让合成数据迎来新的发展契机。

社会端

  • 《报告》将AIGC对社会价值的推动概括为:AIGC的社会价值体现为革新数字内容与艺术创造领域,并将辐射到其他领域和行业,孕育新的技术形态与价值模式,甚至会成为通往AGI(通用AI)的可能性路径。

当然,有机遇就会有挑战。未来,AIGC也将面临包括知识产权、安全问题、伦理道德、环境保护等多个方面的挑战。

7cd60901dd68a232c932141f53aeefde.png

文末彩蛋:“即使语言只是人类经验的一小部分”

在吴恩达给DeeplearningAI的最新来信中,他表示到:

“一个人需要几十辈子的时间,除了阅读什么都不做,才能获得GPT-3在训练过程中接触的单词数量。但是,网络聚合了为数十亿人编写或由数十亿人编写的文本,计算机可以随时访问其中的大部分内容。通过这些数据,LLMs获取了关于人类体验的丰富知识。尽管LLMs从未见过日出,但它已经阅读了足够多关于日出的文字,足以令人信服地描述日出的样子。

因此,即使语言只是人类经验的一小部分,LLMs也能够接触到关于世界的大量信息。这表明,建立智能有多种途径,遵循生物进化或人类儿童成长的方式可能不是工程系统最有效的途径。”

由此,他得出了当下机器学习算法获得智能的最有效途径——通过语言进化。而谷歌联合创始人,现实版的托尼·史塔克曾说过:“终有一天,世界上所有的知识都可以直接与我们的大脑连接。”

从AIGC掀起的语言进化,到世界上所有的知识经验与我们的大脑相连究竟还有多远?你认为呢?

参考资料

《AIGC 发展趋势报告 2023》,腾讯研究院

https://mp.weixin.qq.com/s/DBLJ2m98LHEo6VDgaN_kbQ  《吴恩达来信:靠语言进化的LLMs》

db8d86ddbba07f7f93213b56fc139718.gif


http://chatgpt.dhexx.cn/article/OyQFKKlL.shtml

相关文章

ChatGPT最近大火?教你实现破产版ChatGPT(一)数据预处理

目录 一.前言 二.下载数据文件 三.导包并设置使用GPU 四.加载和预处理数据 五.为模型准备数据 一.前言 最近ChatGPT大火,成功破圈,到底是个啥? 简单说,它是一个模型,一个语言模型!它是以对话方式与人进…

爆火的ChatGPT 背后的大模型与大数据创新

最近,ChatGPT 迅速引爆 AIGC 领域,依托全网大数据与海量智能模型训练,一举成为 Stable Diffusion 之外的 AI 新宠。不同于过往初阶聊天机器人,这位“懂王”似乎可以取代大型搜索平台,与用户展开高质量同频对话。网友也…

ChatGPT背后有哪些关键技术?CSIG企业行带你一探究竟

目录 1 ChatGPT的时代2 CSIG企业行3 议题&嘉宾介绍3.1 对生成式人工智能的思考3.2 对话式大型语言模型研究3.3 文档图像处理中的底层视觉技术 4 观看入口 1 ChatGPT的时代 2015年,马斯克、美国创业孵化器Y Combinator总裁阿尔特曼、全球在线支付平台PayPal联合…

ChatGPT背后的模型三兄弟

ChatGPT作为最接近强人工智能的系统,具有强大的信息理解和信息抽象总结能力,在这个信息过剩的时代,为我们提供了一个非常好的智能辅助工具。在我们日常的工作中,怎么充分的利用ChatGPT等类似的智能系统,会给我们生活和…

ChatGPT火爆,背后的核心到底是什么?

点击上方“小麦大叔”,选择“置顶/星标公众号” 福利干货,第一时间送达 2022年12月份的时候,ChatGPT还只是个被人各种撩的聊天工具。但进入2023年后,已经向着效率工具迈进了。 微软宣布正和ChatGPT开发团队OpenAI进行洽谈&#xf…

ChatGPT背后的模型

文章目录 1.RLHF方法2.ChatGPT中的RLHF方法2.1 微调模型GPT-32.2 训练奖励模型2.3 利用强化学习进一步微调语言模型 3.效果4.面临挑战5.参考 InstructGPT语言模型,是一个比 GPT-3 更善于遵循用户意图,同时使用通过我们的对齐研究开发的技术使它们更真实、…

ChatGPT既然这么火,有没有弊端呢?

介绍 在现代社会中,人们越来越依赖技术来解决问题。聊天机器人是一种最新的技术趋势,这种技术可以为人们带来很多便利。而ChatGPT聊天机器人则是其中的一种,它使用了大型的语言模型GPT(Generative Pre-trained Transformer&#…

突发!ChatGPT疯了!

‍数据智能产业创新服务媒体 ——聚焦数智 改变商业 今天,笔者正常登录ChatGPT,试图调戏一下他。但是,突然震惊的发现,ChatGPT居然疯了。 之所以说他是疯了,而不是崩溃了,是因为他还能回复我,但…

ChatGPT背后的逻辑

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl OpenAI与ChatGPT OpenAI是一个美国的人工智能(AI)研究实验室,由非营利组织OpenAI Incorporated和其盈利子公司OpenAI Limited Partnersh…

ChatGPT爆火网络背后的故事?

文章目录 前言一、ChatGPT的诞生背景二、ChatGPT的技术原理三、ChatGPT的推广策略四、ChatGPT的未来展望五、橙子送书第2期 前言 ChatGPT是一款基于人工智能技术的聊天机器人,它的出现引起了广泛的关注和热议。在短短的时间内,ChatGPT就成为了全球范围内…

ChatGPT 用户破亿背后...

2022 年 12 月初,ChatGPT 被社会广泛讨论之初,我们就介绍了 ChatGPT 母公司 OpenAI 使用了身份云(IDaaS)服务。在当时,人们还在感慨 ChatGPT 上线不到一周时间用户量就突破百万,而仅仅在不到两个月后&#…

ChatGPT背后的经济账

ChatGPT能否取代Google、百度这样的传统搜索引擎?为什么中国不能很快做出ChatGPT?当前,对这些问题的探讨大多囿于大型语言模型(LLM)的技术可行性,忽略或者非常粗糙地估计了实现这些目标背后的经济成本&…

ChatGPT是风口吗?爆火后的质疑猝不及防

作者观: 首先要明确一点,ChatGPT代替不了人类,不要抱不切实际的期望。 作为一款由OpenAI开发的人工智能聊天软件,该程序在一些人的眼里具有革命性的意义。 有人说,这玩意儿可以在一夜之间让无数人失业,也有…

带头抵制高级AI,马斯克在怕什么

Chat-GPT 和 GPT-4 给大家留下的话题实在不少,一边是大家已经开始享受着人工智能带来的便捷,各种写论文出脚本,另一头则是更多的精英人士开始对高级 AI 心存忧虑。 上个月底,据路透社的报道,有一群人工智能专家及行业…

二月安全月报 | 45亿条快递数据疑泄露,Twitter史上最大规模宕机

为了让大家更全面的了解网络安全的风险,顶象针对每月值得关注的安全技术和事件进行盘点总结。 国内安全热点 👉业务安全 男子注册上万账号薅羊毛获利13万 近日,上海市,由闵行区人民检察院提起公诉的刘某某诈骗一案开庭审理&…

最先被GPT革掉命的,大概率是你每天都在用的验证码

前段时间,有一个叫 “ Chirper ” 的互联网社区突然火了。 和普通的社区不一样,这个社区拒绝任何真实人类的进入。所有在上面发帖的,都是提前设定好角色属性的 “ 机器人 ”。 它们之中有年龄高达 300 岁的可以使用魔法和动物交流的森林女王…

“用过 Rust 后,我写 Python 的方法都变了!”

近年来,Rust 以其安全性出名,逐渐被各大科技巨头所拥抱——那么,其他主流语言是否可以参考 Rust 的编程思想呢?本文作者以 Python 为例,做了一番尝试。 原文链接:https://kobzol.github.io/rust/python/202…

如何实现在纯 Web 端完成各类 API 调试?

作者 | 张涛,携程机票研发部高级软件工程师 责编 | 夏萌 在软件开发过程中,对于各类 API 的调试工作至关重要。API 调试是验证和测试应用程序接口的有效性和正确性的关键步骤。传统的 API 调试方法通常依赖于独立的工具或桌面应用程序,限制了…

BASIC 之父出生 | 历史上的今天

整理 | 王启隆 透过「历史上的今天」,从过去看未来,从现在亦可以改变未来。 今天是 2023 年 5 月 31 日,在 1962 年的今天,伦纳德克兰罗克(Leonard Kleinrock)发表了他的第一篇论文,题为“大型通…

22字声明、近400名专家签署、AI教父Hinton与OpenAI CEO领头预警:AI可能灭绝人类!...

整理 | 屠敏 出品 | CSDN(ID:CSDNnews) 经过不到一年的时间,AI 的发展超乎所有人的想象,也大有失控的风险。 就在今天,全球部分顶尖的 AI 研究员、工程师和 CEO 就他们认为 AI 对人类构成的生存威胁发出了新…