【大数据】【Spark】Spark概述

article/2025/9/15 9:29:44

由于Spark程序的编写最好使用Scala语言,可参照博主以下Scala入门文章
链接:https://blog.csdn.net/treesorshining/article/details/124697102

文章目录

  • 1.Spark概念
  • 2.Spark与Hadoop的关系
    • 1.从时间节点上来看
    • 2.从功能上来看
  • 3.Spark与Hadoop的比较
  • 4.Spark核心模块

1.Spark概念

Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。

2.Spark与Hadoop的关系

1.从时间节点上来看

➢ Hadoop

⚫ 2006 年 1 月,Doug Cutting 加入 Yahoo,领导 Hadoop 的开发

⚫ 2008 年 1 月,Hadoop 成为 Apache 顶级项目

⚫ 2011 年 1.0 正式发布

⚫ 2012 年 3 月稳定版发布

⚫ 2013 年 10 月发布 2.X (Yarn)版本

➢ Spark

⚫ 2009 年,Spark 诞生于伯克利大学的 AMPLab 实验室

⚫ 2010 年,伯克利大学正式开源了 Spark 项目

⚫ 2013 年 6 月,Spark 成为了 Apache 基金会下的项目

⚫ 2014 年 2 月,Spark 以飞快的速度成为了 Apache 的顶级项目

⚫ 2015 年至今,Spark 变得愈发火爆,大量的国内公司开始重点部署或者使用 Spark

2.从功能上来看

➢ Hadoop

⚫ Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架

⚫ 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有的 数 据 , 支 持 着 Hadoop 的 所 有 服 务 。 它 的 理 论 基 础 源 于 Google 的TheGoogleFileSystem 这篇论文,它是 GFS 的开源实现。

⚫ MapReduce 是一种编程模型,Hadoop 根据 Google 的 MapReduce 论文将其实现,作为 Hadoop 的分布式计算模型,是 Hadoop 的核心。基于这个框架,分布式并行程序的编写变得异常简单。综合了 HDFS 的分布式存储和 MapReduce 的分布式计算,Hadoop 在处理海量数据时,性能横向扩展变得非常容易。

⚫ HBase 是对 Google 的 Bigtable 的开源实现,但又和 Bigtable 存在许多不同之处。HBase 是一个基于 HDFS 的分布式数据库,擅长实时地随机读/写超大规模数据集。它也是 Hadoop 非常重要的组件。

➢ Spark

⚫ Spark 是一种由 Scala 语言开发的快速、通用、可扩展的大数据分析引擎

⚫ Spark Core 中提供了 Spark 最基础与最核心的功能

⚫ Spark SQL 是 Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用SQL 或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。

⚫ Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的 API。由上面的信息可以获知,Spark 出现的时间相对较晚,并且主要功能主要是用于数据计算,所以其实 Spark 一直被认为是 Hadoop 框架的升级版。

3.Spark与Hadoop的比较

⚫ Hadoop MapReduce 由于其设计初衷并不是为了满足循环迭代式数据流处理,因此在多并行运行的数据可复用场景(如:机器学习、图挖掘算法、交互式数据挖掘算法)中存在诸多计算效率等问题。所以 Spark 应运而生,Spark 就是在传统的 MapReduce 计算框架的基础上,利用其计算过程的优化,从而大大加快了数据分析、挖掘的运行和读写速度,并将计算单元缩小到更适合并行计算和重复使用的 RDD 计算模型。

⚫ 机器学习中 ALS、凸优化梯度下降等。这些都需要基于数据集或者数据集的衍生数据反复查询反复操作。MR 这种模式不太合适,即使多 MR 串行处理,性能和时间也是一个问题。数据的共享依赖于磁盘。另外一种是交互式数据挖掘,MR 显然不擅长。而Spark 所基于的 scala 语言恰恰擅长函数的处理。

⚫ Spark 是一个分布式数据快速分析项目。它的核心技术是弹性分布式数据集(Resilient Distributed Datasets),提供了比 MapReduce 丰富的模型,可以快速在内存中对数据集进行多次迭代,来支持复杂的数据挖掘算法和图形计算算法。

⚫ Spark 和Hadoop 的根本差异是多个作业之间的数据通信问题 : Spark 多个作业之间数据通信是基于内存,而 Hadoop 是基于磁盘。

⚫ Spark Task 的启动时间快。Spark 采用 fork 线程的方式,而 Hadoop 采用创建新的进程的方式。

⚫ Spark 只有在 shuffle 的时候将数据写入磁盘,而 Hadoop 中多个 MR 作业之间的数据交互都要依赖于磁盘交互

⚫ Spark 的缓存机制比 HDFS 的缓存机制高效。

经过上面的比较,可以看出在绝大多数的数据计算场景中,Spark 确实会比 MapReduce更有优势。但是 Spark 是基于内存的,所以在实际的生产环境中,由于内存的限制,可能会由于内存资源不够导致 Job 执行失败,此时,MapReduce 其实是一个更好的选择,所以 Spark并不能完全替代 MR。

4.Spark核心模块

在这里插入图片描述


http://chatgpt.dhexx.cn/article/MffyVQwK.shtml

相关文章

Spark大数据系列教程持续更新

Spark大数据系列教程 想学习大数据的福利来了,由于近期工作繁忙,本人已将自己学习大数据的过程陆续开始更新: Spark大数据系列:一、RDD详解Spark大数据系列 二、Spark入门程序WordCount详解(Scala版本)Spark大数据系列&#xff…

大数据面试题——spark

文章目录 讲一下spark 的运行架构一个spark程序的执行流程讲一下宽依赖和窄依赖spark的stage是如何划分的Spark的 RDD容错机制。checkpoint 检查点机制?RDD、DAG、 Stage、 Task 、 Job Spark的shuffle介绍Spark为什么快,Spark SQL 一定比 Hive 快吗Spar…

引爆Spark大数据引擎的七大工具

原文名称:7 tools to fire up Sparks big data engine Spark正在数据处理领域卷起一场风暴。让我们通过本篇文章,看看为Spark的大数据平台起到推波助澜的几个重要工具。 Spark生态系统众生相 Apache Spark不仅仅让大数据处理起来更快,还让大…

大数据面试题Spark篇(1)

目录 1.spark数据倾斜 2.Spark为什么比mapreduce快? 3.hadoop和spark使用场景? 4.spark宕机怎么迅速恢复? 5. RDD持久化原理? 6.checkpoint检查点机制 7.checkpoint和持久化的区别 8.说一下RDD的血缘 9.宽依赖函数&#…

大数据_Spark常见组件

Spark 是一个分布式数据处理引擎,其各种组件在一个集群上协同工作,下面是各个组件之间的关系图。 Spark驱动器 作为 Spark 应用中负责初始化 SparkSession 的部分,Spark 驱动器扮演着多个角色:它与集群管理器打交道;它…

大数据Spark框架

Spark 是一种基于内存快速、通用、可扩展的大数据分析计算引擎。 Spark 优势: Spark核心单元RDD适合并行计算和重复使用;RDD模型丰富,使用灵活;多个任务之间基于内存相互通信(除了shuffle会把数据写入磁盘&#xff0…

Windows下的Spark环境配置(含IDEA创建工程--《Spark大数据技术与应用》第九章-菜品推荐项目)

文章目录 前言一、下载资源二、本地配置步骤1.解压2.引入本地环境3.启动HADOOP文件4.进行Spark测试 三、IDEA引入Spark项目1.idea按照scala插件2.新建scala项目3.配置项目4.新建scala类 前言 本文适用于《Spark大数据技术与应用》第九章-菜品推荐项目环境配置: 跟…

Spark开发:Spark大数据开发编程示例

大数据开发人员,根据企业大数据处理的需求,进行大数据平台系统的搭建,比如说Hadoop,比如说Spark,而不同的大数据处理框架,采取不同的编程语言和编程模型,这就需要技术开发人员要掌握相关的技术。…

《Spark大数据技术与应用》肖芳 张良均著——课后习题

目录 教材知识汇总课后习题第一章 Spark概述Spark的特点Spark生态圈Spark应用场景 第二章 Scala基础匿名函数SetMapmapflatMapgroupBy课后习题 第三章 Spark编程教材52页任务3.2及之后的任务 重点复习sortBy排序collect查询distinct去重zip实训题实训1实训2选择题编程题 第四章…

Spark大数据技术与应用 第一章Spark简介与运行原理

Spark大数据技术与应用 第一章Spark简介与运行原理 1.Spark是2009年由马泰扎哈里亚在美国加州大学伯克利分校的AMPLab实验室开发的子项目,经过开源后捐赠给Aspache软件基金会,成为了Apache Spark。由Scala语言实现的专门为大规模数据处理而设计的快速通用…

大数据之Spark:Spark 基础

目录 1、Spark 发展史2、Spark 为什么会流行3、Spark 特点4、Spark 运行模式 1、Spark 发展史 2009 年诞生于美国加州大学伯克利分校 AMP 实验室; 2014 年 2 月,Spark 成为 Apache 的顶级项目; Spark 成功构建起了一体化、多元化的大数据处…

大数据之spark详解

目录 什么是spark: 功能历史上和hadoop的区别: spark的五大核心模块: ➢ Spark Core 什么是spark: 简单一点Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。属于mapreduce的加强版本,结合了其优点…

09.大数据技术之Spark

文章目录 一、Spark概述1、概述2、Spark特点 二、Spark角色介绍及运行模式1、集群角色2、运行模式 三、Spark集群安装1.Local模式1.下载文件2.解压缩3、修改配置文件4.配置环境变量5.启动服务6.启动客户端 2.Standalone模式1.停止服务2.修改配置文件spark-env.sh3.修改配置文件…

大数据框架之Spark详解

目录 1 Spark概述1.1 Spark是什么?1.2 Spark内置模块1.3 Spark 特点 2 RDD概述2.1 什么是RDD?2.2 RDD的属性2.3 RDD特点2.4 弹性体现在哪?2.5 分区2.6 分区2.7 依赖2.8 缓存2.9 CheckPoint 1 Spark概述 1.1 Spark是什么? Spark是…

大数据学习 之 Spark 概述

文章目录 一、Spark简介Spark与Hadoop的区别部署模式 二、 Spark架构1.Driver2.Executor3.Master & Worker4.Cluster manager5.ApplicationMaster补充点:Stage执行过程 三、Shuffle机制shuffle介绍Shuffle的影响导致Shuffle的操作 四、RDD(弹性分布式…

大数据技术---Spark

一、Spark简介 1、Spark概述 Spark:由美国加州伯克利大学的AMP实验室于2009年开发,基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。 三大分布式计算系统开源项目:Hadoop、Spark、Storm。 Spark的…

KB、MB、GB等和KiB、MiB、GiB等的区别

今天装系统RHEL7.7,在分区时发现单位变成MiB、GiB了,有点奇怪就查了查。 区别: KB、MB、GB等单位以10为底数的指数 KiB、MiB、GiB等单位是以2为底数的指数 如:1KB10^31000, 1MB10^610000001000KB,1GB10^910000000001000MB,而 …

asset size limit: The following asset(s) exceed the recommended size limit (244 KiB).

webpack打包提示文件体积过大导致: The following asset(s) exceed the recommended size limit (244 KiB). This can impact web performance. entrypoint size limit: The following entrypoint(s) combined asset size exceeds the recommended limit (244 Ki…

当git clone遇到client_loop:send disconnect: Connection reset by peer00 Kib/s

当git clone遇到client_loop:send disconnect: Connection reset by peer00 Kib/s 1. 问题描述2.问题解决3.原因分析 1. 问题描述 刚换了新电脑,重新配置了下git仓库的ssh后,迫不及待想 git clone 先项目。发现遇到个问题: 在执行 git clone…

Kibana

Kibana是一个开源的分析和可视化平台,设计用于和Elasticsearch一起工作。 你用Kibana来搜索,查看,并和存储在Elasticsearch索引中的数据进行交互。 你可以轻松地执行高级数据分析,并且以各种图标、表格和地图的形式可视化数据。…