引爆Spark大数据引擎的七大工具

article/2025/9/15 9:29:44

       原文名称:7 tools to fire up Spark's big data engine  

      Spark正在数据处理领域卷起一场风暴。让我们通过本篇文章,看看为Spark的大数据平台起到推波助澜的几个重要工具。

七大工具共筑Spark大数据引擎

Spark生态系统众生相

       Apache Spark不仅仅让大数据处理起来更快,还让大数据处理起来更简单、功能更强大、更方便。Spark并非只是一项技术,它结合了诸多部分,新的功能和性能改进不断添加进来,每个部分都在不断完善之中。

      本文介绍了Spark生态系统的每个主要部分:每个部分的功能,为什么很重要,是如何发展的,在哪方面不尽如人意,以及可能会往哪个方向发展。

Spark Core

七大工具共筑Spark大数据引擎

      Spark的核心是恰如其名的Spark Core。除了协调和调度作业外,Spark Core还为Spark中的数据处理提供了基本的抽象机制,名为弹性分布式数据集(RDD)。

      RDD对数据执行两个动作:转换和操作。前者转换数据,并将它们作为刚创新的RDD来提供;后者根据现有的RDD(比如对象数量)来计算结果。

      Spark的速度很快,原因是转换和操作都保存在内存中。操作慢腾腾地评估,这意味着只有需要相关的数据时,才执行操作;然而,很难搞清楚什么在缓慢运行。

      Spark的速度在不断提高。Java的内存管理往往给Spark带来问题,于是Project Tungsten计划避开JVM的内存和垃圾收集子系统,以此提高内存效率。

Spark API

七大工具共筑Spark大数据引擎

       Spark主要是用Scala编写的,所以Spark的主要API长期以来也支持Scala。不过另外三种使用广泛得多的语言同样得到支持:Java(Spark也依赖它)、Python和R.

       总的来说,你最好选择自己最擅长的那种语言,因为你需要的功能特性很可能在该语言中直接得到支持。只有一个例外:相比之下,SparkR中对机器学习的支持不大给力,目前只有一小批算法可供使用。不过将来这种情况势必会发生变化。

Spark SQL

七大工具共筑Spark大数据引擎

      千万不要低估了能够对批量数据执行SQL查询的能力或便利。Spark SQL提供了对Spark提供的数据执行SQL查询(并且请求列式DataFrame)的一种通用机制,包括通过ODBC/JDBC连接件进行管道处理的查询。你甚至不需要正规的数据源。Spark 1.6中添加了这一功能:支持以一种得到支持的格式查询扁平文件,就像Apache Drill那样。

       Spark SQL其实并不用于更新数据,因为那与Spark的整个意义相悖。可以将因而生成的数据写回成新的Spark数据源(比如新的Parquet表),但是UPDATE查询并不得到支持。别指望诸如此类的功能特性很快就会推出;着眼于Spark SQL的改进大多数用于提升其性能,因为它也成了Spark Streaming的基础。

Spark Streaming

       Spark的设计让它得以支持许多处理方法,包括流处理――Spark Streaming因此得名。关于Spark Steaming的传统观点是,它还半生不熟,这意味着只有你不需要瞬间延迟,或者如果你还没有投入到另一种流数据处理解决方案(比如说Apache Storm),你才会使用它。

      但是Storm在逐渐失去人气;长期使用Storm的推特此后已改用了自己的项目Heron。此外,Spark 2.0承诺会推出一种新的“结构化数据流”模式,以便对实时数据进行交互式Spark SQL查询,包括使用Spark​的机器学习库。至于其性能是否高得足以击败竞争对手仍需拭目以待,不过它值得认真考虑。

MLlib(机器学习)

      机器学习技术素有既神奇,又困难之称。Spark让你可以对Spark中的数据运行许多常见的机器学习算法,从而使这些类型的分析容易得多,也更容易被Spark用户所使用。

      MLlib中的可用算法数量众多,该框架每推出一个修订版,就会随之增多。话虽如此,一些类型的算法还是没有――比如说,涉及深度学习的任何算法。第三方正在利用Spark的人气来填补这一空白;比如说,雅虎可以借助CaffeOnSpark执行深度学习,它通过Spark充分利用了Caffe深度学习系统。

GraphX​​(图形计算)

      描绘数百万实体之间的关系通常需要图形,这种数据构件描述了那些实体之间的相互关系。Spark的GraphX​​ API让你可以使用Spark的一套方法,对数据执行图形操作,于是构建和转换这类图形的繁重任务卸载到了Spark。GraphX​​还包括用于处理数据的几种常见算法,比如PageRank或标签传播(label propagation)。

      从目前来看,GraphX的​​一个主要限制是,它最适合静态图形。处理添加了新顶点的图形会严重影响性能。此外,如果你已经在使用一种成熟的图形数据库解决方案,GraphX还​​不太可能取代它。

SparkR(Spark上的R)

       R语言为进行统计数值分析和机器学习工作提供了一种环境。Spark在2015年6月添加了支持R的功能,以匹配其支持Python和Scala的功能。

       除了为潜在的Spark开发人员多提供一种语言外,SparkR还让R程序员们可以做之前做不了的许多事情,比如访问超过单一机器的内存容量的数据集,或者同时轻松地使用多个进程或在多个机器上运行分析。

      SparkR还让R程序员可以充分利用Spark中的MLlib机器学习模块,创建一般的线性模型。遗憾的是,并非所有的MLlib功能在SparkR中得到支持,不过Spark每推出一个后续的修订版,都在填补R支持方面的差距。

      作者:布加迪编译来源:51CTO.com


http://chatgpt.dhexx.cn/article/IwGxOJtH.shtml

相关文章

大数据面试题Spark篇(1)

目录 1.spark数据倾斜 2.Spark为什么比mapreduce快? 3.hadoop和spark使用场景? 4.spark宕机怎么迅速恢复? 5. RDD持久化原理? 6.checkpoint检查点机制 7.checkpoint和持久化的区别 8.说一下RDD的血缘 9.宽依赖函数&#…

大数据_Spark常见组件

Spark 是一个分布式数据处理引擎,其各种组件在一个集群上协同工作,下面是各个组件之间的关系图。 Spark驱动器 作为 Spark 应用中负责初始化 SparkSession 的部分,Spark 驱动器扮演着多个角色:它与集群管理器打交道;它…

大数据Spark框架

Spark 是一种基于内存快速、通用、可扩展的大数据分析计算引擎。 Spark 优势: Spark核心单元RDD适合并行计算和重复使用;RDD模型丰富,使用灵活;多个任务之间基于内存相互通信(除了shuffle会把数据写入磁盘&#xff0…

Windows下的Spark环境配置(含IDEA创建工程--《Spark大数据技术与应用》第九章-菜品推荐项目)

文章目录 前言一、下载资源二、本地配置步骤1.解压2.引入本地环境3.启动HADOOP文件4.进行Spark测试 三、IDEA引入Spark项目1.idea按照scala插件2.新建scala项目3.配置项目4.新建scala类 前言 本文适用于《Spark大数据技术与应用》第九章-菜品推荐项目环境配置: 跟…

Spark开发:Spark大数据开发编程示例

大数据开发人员,根据企业大数据处理的需求,进行大数据平台系统的搭建,比如说Hadoop,比如说Spark,而不同的大数据处理框架,采取不同的编程语言和编程模型,这就需要技术开发人员要掌握相关的技术。…

《Spark大数据技术与应用》肖芳 张良均著——课后习题

目录 教材知识汇总课后习题第一章 Spark概述Spark的特点Spark生态圈Spark应用场景 第二章 Scala基础匿名函数SetMapmapflatMapgroupBy课后习题 第三章 Spark编程教材52页任务3.2及之后的任务 重点复习sortBy排序collect查询distinct去重zip实训题实训1实训2选择题编程题 第四章…

Spark大数据技术与应用 第一章Spark简介与运行原理

Spark大数据技术与应用 第一章Spark简介与运行原理 1.Spark是2009年由马泰扎哈里亚在美国加州大学伯克利分校的AMPLab实验室开发的子项目,经过开源后捐赠给Aspache软件基金会,成为了Apache Spark。由Scala语言实现的专门为大规模数据处理而设计的快速通用…

大数据之Spark:Spark 基础

目录 1、Spark 发展史2、Spark 为什么会流行3、Spark 特点4、Spark 运行模式 1、Spark 发展史 2009 年诞生于美国加州大学伯克利分校 AMP 实验室; 2014 年 2 月,Spark 成为 Apache 的顶级项目; Spark 成功构建起了一体化、多元化的大数据处…

大数据之spark详解

目录 什么是spark: 功能历史上和hadoop的区别: spark的五大核心模块: ➢ Spark Core 什么是spark: 简单一点Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。属于mapreduce的加强版本,结合了其优点…

09.大数据技术之Spark

文章目录 一、Spark概述1、概述2、Spark特点 二、Spark角色介绍及运行模式1、集群角色2、运行模式 三、Spark集群安装1.Local模式1.下载文件2.解压缩3、修改配置文件4.配置环境变量5.启动服务6.启动客户端 2.Standalone模式1.停止服务2.修改配置文件spark-env.sh3.修改配置文件…

大数据框架之Spark详解

目录 1 Spark概述1.1 Spark是什么?1.2 Spark内置模块1.3 Spark 特点 2 RDD概述2.1 什么是RDD?2.2 RDD的属性2.3 RDD特点2.4 弹性体现在哪?2.5 分区2.6 分区2.7 依赖2.8 缓存2.9 CheckPoint 1 Spark概述 1.1 Spark是什么? Spark是…

大数据学习 之 Spark 概述

文章目录 一、Spark简介Spark与Hadoop的区别部署模式 二、 Spark架构1.Driver2.Executor3.Master & Worker4.Cluster manager5.ApplicationMaster补充点:Stage执行过程 三、Shuffle机制shuffle介绍Shuffle的影响导致Shuffle的操作 四、RDD(弹性分布式…

大数据技术---Spark

一、Spark简介 1、Spark概述 Spark:由美国加州伯克利大学的AMP实验室于2009年开发,基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。 三大分布式计算系统开源项目:Hadoop、Spark、Storm。 Spark的…

KB、MB、GB等和KiB、MiB、GiB等的区别

今天装系统RHEL7.7,在分区时发现单位变成MiB、GiB了,有点奇怪就查了查。 区别: KB、MB、GB等单位以10为底数的指数 KiB、MiB、GiB等单位是以2为底数的指数 如:1KB10^31000, 1MB10^610000001000KB,1GB10^910000000001000MB,而 …

asset size limit: The following asset(s) exceed the recommended size limit (244 KiB).

webpack打包提示文件体积过大导致: The following asset(s) exceed the recommended size limit (244 KiB). This can impact web performance. entrypoint size limit: The following entrypoint(s) combined asset size exceeds the recommended limit (244 Ki…

当git clone遇到client_loop:send disconnect: Connection reset by peer00 Kib/s

当git clone遇到client_loop:send disconnect: Connection reset by peer00 Kib/s 1. 问题描述2.问题解决3.原因分析 1. 问题描述 刚换了新电脑,重新配置了下git仓库的ssh后,迫不及待想 git clone 先项目。发现遇到个问题: 在执行 git clone…

Kibana

Kibana是一个开源的分析和可视化平台,设计用于和Elasticsearch一起工作。 你用Kibana来搜索,查看,并和存储在Elasticsearch索引中的数据进行交互。 你可以轻松地执行高级数据分析,并且以各种图标、表格和地图的形式可视化数据。…

WARNING in asset size limit: The following asset(s) exceed the recommended size limit (244 KiB)

Taro打包h5体积限制 警告: WARNING in asset size limit: The following asset(s) exceed the recommended size limit (244 KiB). 可以使用webpack-bundle-analyzer插件对打包体积进行分析,参考代码: webpackChain (chain) {chain.plug…

【名词解释】KiB和KB,MiB和MB,GiB和GB 等的区别以及1M带宽到底是多少?

目录 1. KiB和KB,MiB和MB,GiB和GB 2. 宽带速度 3. 单位换算 1. KiB和KB,MiB和MB,GiB和GB KiB和KB,MiB和MB,GiB和GB 等的区别: 1KB(kilobyte)10^31000byte, 1KiB(kibibyte)2^101024byte …

b、B、KB、Kib、MB、MiB、GB、GiB、TB、TiB的区别

1024这个数字,想必计算机行业从业人员应该不会陌生,甚至10月24日还被当做程序员日,如果你问一个程序员1GB等于多少MB,他大概率会不假思索回答:1024。 没错,对于稍微对计算机或者网络有了解的人,一般都认为1024是数据容…