CCF-CSP认证 202303 500分题解

article/2025/9/28 18:51:10

202303-1 田地丈量(矩形面积交)

矩形面积交=x轴线段交长度*y轴线段交长度

线段交长度,相交的时候是min右端点-max左端点,不相交的时候是0

#include<bits/stdc++.h>
using namespace std;
int n,a,b,ans,x,y,x2,y2;
int f(int l1,int r1,int l,int r){return max(0,min(r1,r)-max(l1,l));
}
int main(){cin>>n>>a>>b;for(int i=1;i<=n;++i){cin>>x>>y>>x2>>y2;ans+=f(0,a,x,x2)*f(0,b,y,y2);}cout<<ans<<endl;return 0;
}

202303-2 垦田计划(二分)

二分最终答案x(x>=k),判断降到x天资源是否够

够的话就往小里二分,否则往大里二分,

当然贪心也可以做,排序之后,把最耗时的天数逐个压低,使得后缀和前面持平

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int n,m,k,t[N],c[N],mx;
bool ok(int x){ll sum=0;for(int i=1;i<=n;++i){if(t[i]<=x)continue;sum+=1ll*(t[i]-x)*c[i];if(sum>m)return 0;}return 1;
}
int main(){cin>>n>>m>>k;for(int i=1;i<=n;++i){cin>>t[i]>>c[i];mx=max(mx,t[i]);}int l=k,r=mx;while(l<=r){int mid=(l+r)/2;if(ok(mid))r=mid-1;else l=mid+1;}cout<<l<<endl;return 0;
}

202303-3 LDAP(模拟+栈+bitset)

主要是要解决表达式嵌套的问题,

与栈实现计算器时维护一个符号栈、一个数值栈类似

这里维护了两个栈,一个符号栈op,一个bitset集合栈stk,集合求交、或,由bitset完成

当遇到&或|时,将符号压栈;当遇到)时,将bitset压栈;()内正常读取,求bitset即可

当同一个符号对应两个bitset在栈内(num[c]=2)时,将两个bitset运算为一个bitset

其余部分map乱搞,q[i][j]表示DN=i用户的j属性值,

p(i,j)表示i属性值为j的有哪些用户,has[i]表示i属性有哪些用户,

i:j操作时,p[i][j]即为所求;i~j操作时,has[i]内去掉p[i][j]即为所求

to[i]记录了第i个用户对应的DN值,输出时按DN从小到大排序即可

实际耗时3s多,12s绰绰有余

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int N=2502;
int n,m,sz,id,k,c,d,x,y,num[N],to[N],f[N];
map<int,int>q[N];
map<P,vector<int>>p;
map<int,vector<int>>has;
char s[N],op[N];
bitset<N>stk[N*2],res;
bitset<N>cal(int l,char x,int r){bitset<N>ans;for(auto &v:p[P(l,r)]){ans.set(v);}if(x=='~'){for(auto &v:has[l]){ans.flip(v);}}return ans;
}
int main(){scanf("%d",&n);for(int i=1;i<=n;++i){scanf("%d%d",&id,&k);to[i]=id;for(int j=1;j<=k;++j){scanf("%d%d",&x,&y);q[i][x]=y;has[x].push_back(i);p[P(x,y)].push_back(i);}}scanf("%d",&m);for(int i=1;i<=m;++i){scanf("%s",s);sz=strlen(s);c=d=0;for(int j=0;j<sz;){if(s[j]=='&' || s[j]=='|'){op[++c]=s[j++];}else if(s[j]=='('){j++;}else if(s[j]==')'){num[c]++;if(num[c]==2){d--;if(op[c]=='&')stk[d]=stk[d]&stk[d+1];else stk[d]=stk[d]|stk[d+1];num[c--]=0;}j++;}else{int cur=j,l=0,r=0;while(cur<sz && (s[cur]!=':' && s[cur]!='~')){l=l*10+(s[cur]-'0');cur++;}char x=s[cur++];while(cur<sz && s[cur]!=')'){r=r*10+(s[cur]-'0');cur++;}stk[++d]=cal(l,x,r);j=cur;}}int e=0;for(int j=1;j<=n;++j){if(stk[d].test(j)){f[++e]=to[j];}}sort(f+1,f+e+1);for(int j=1;j<=e;++j){printf("%d%c",f[j]," \n"[j==e]);}if(!e)puts("");}return 0;
}

202303-4 星际网络II(线段树)

线段树(离散化、单点询问、区间求和、区间最值),经典题了

线段树维护区间和,用于记录对应区间几个值被用过

线段树维护最大最小值,用于记录被哪个用户id用过,

当最小值=最大值时,表示恰被一个用户用过

首先,将最大32维的数转10进制,压成长为32的array,

离散化去重后,找到每个ip地址对应下标映射

操作1:若[l,r]是否没被用户用过,或[l,r]仅被当前用户用过且没占满,则可行,否则不可行

线段树先查一下这段区间和,等于0表示没被用过,则可行

否则,判一下当前区间最大最小值,若最大最小值相等且区间和小于区间长度,则可行

操作2:单点询问,查单点最大/最小值即可知道被哪个用户用过,或没用过

操作3:区间询问,若[l,r]仅被一个用户全用过,则区间和为区间长度,区间最大最小值相等

注意离散化时,需要给右端点+1的值也离散化进去,并考虑+1带来的进位问题

否则,可能会出现[1,2][4,5]在离散化前不相邻,离散化后变为[1,2][3,4]相邻的情形

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=15e4+10,M=5e4+10,K=170,B=32,INF=0x3f3f3f3f;
struct segtree{int n;struct node{int l,r,v,c,mn,mx;}e[N<<2];#define l(p) e[p].l#define r(p) e[p].r#define v(p) e[p].v#define c(p) e[p].c#define mn(p) e[p].mn#define mx(p) e[p].mxvoid up(int p){v(p)=v(p<<1)+v(p<<1|1);mn(p)=min(mn(p<<1),mn(p<<1|1));mx(p)=max(mx(p<<1),mx(p<<1|1));}void bld(int p,int l,int r){l(p)=l;r(p)=r;c(p)=0;if(l==r){v(p)=0;mn(p)=INF;mx(p)=-INF;return;}int mid=l+r>>1;bld(p<<1,l,mid);bld(p<<1|1,mid+1,r);up(p);}void psd(int p){if(c(p)){v(p<<1)=r(p<<1)-l(p<<1)+1;mn(p<<1)=min(mn(p<<1),c(p));mx(p<<1)=max(mx(p<<1),c(p));c(p<<1)=c(p);v(p<<1|1)=r(p<<1|1)-l(p<<1|1)+1;		mn(p<<1|1)=min(mn(p<<1|1),c(p));mx(p<<1|1)=max(mx(p<<1|1),c(p));c(p<<1|1)=c(p);c(p)=0; }}void init(int _n){n=_n;bld(1,1,n);}void chg(int p,int ql,int qr,int v){if(ql>qr)return;if(ql<=l(p)&&r(p)<=qr){v(p)=r(p)-l(p)+1;mn(p)=min(mn(p),v);mx(p)=max(mx(p),v);c(p)=v;return;}psd(p);int mid=l(p)+r(p)>>1;if(ql<=mid)chg(p<<1,ql,qr,v);if(qr>mid)chg(p<<1|1,ql,qr,v);up(p);}int cnt(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return v(p);int mid=l(p)+r(p)>>1,res=0;psd(p);if(ql<=mid)res+=cnt(p<<1,ql,qr);if(qr>mid)res+=cnt(p<<1|1,ql,qr);return res;}int amn(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mn(p);int mid=l(p)+r(p)>>1,res=INF;psd(p);if(ql<=mid)res=min(res,amn(p<<1,ql,qr));if(qr>mid)res=min(res,amn(p<<1|1,ql,qr));return res;}int amx(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mx(p);int mid=l(p)+r(p)>>1,res=-INF;psd(p);if(ql<=mid)res=max(res,amx(p<<1,ql,qr));if(qr>mid)res=max(res,amx(p<<1|1,ql,qr));return res;}
}seg;
int n,m,q,op,c;
array<int,B>f[N];
auto cal(string s){int d=0;array<int,B>ans={0};for(auto &y:s){if(y==':'){d++;continue;}int &v=ans[d];if('a'<=y && y<='f')v=v*16+(y-'a')+10;else v=v*16+(y-'0');}return ans;
}
auto add_one(array<int,B>y){y[n/16-1]++;for(int i=B-1;i;--i){if(y[i]>=65536){y[i]-=65536;y[i-1]++;}}return y;
}
int g(array<int,B>v){int x=lower_bound(f,f+c,v)-f;return x+1;
}
struct ask{int op,x;string s,t;void rd(){cin>>op;if(op==1)cin>>x;cin>>s;f[c++]=cal(s);if(op==2)t=s;else{cin>>t;f[c++]=cal(t);f[c]=add_one(f[c-1]);c++;}}void sol(){int l=g(cal(s)),r=g(cal(t)),w=seg.cnt(1,l,r);int mn=seg.amn(1,l,r),mx=seg.amx(1,l,r);if(op==1){if(!w || (w<r-l+1 && mn==mx && mn==x)){seg.chg(1,l,r,x);cout<<"YES"<<endl;}else{cout<<"NO"<<endl;}}else if(op==2){cout<<(mn==INF?0:mn)<<endl;}else{cout<<(w==r-l+1 && mn==mx?mn:0)<<endl;}}
}e[M];
int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin>>n>>q;for(int i=1;i<=q;++i){e[i].rd();}sort(f,f+c);c=unique(f,f+c)-f;seg.init(c+5);for(int i=1;i<=q;++i){e[i].sol();}return 0;
}

202303-5 施肥(分治+线段树+树状数组)

n,m<=3000乱搞一下就ok,数据范围再小的就不提了

虽然事后发现,n,m<=3000的暴力,我是用的O(nmlogn),而官解是O(n^2+nm)

特殊性质的分也比较好判断,这样75分就到手了,然后就不会了,就去嫖了官解

这个做法本质是对O(n^2+nm)的暴力套了个分治,

虽然出题人说,两个满分,分别是用李超树和分块过的,感觉很神秘

理解了好久,花若干时间写完代码之后,交上去wa成sb,

对拍拍出来问题之后,交上去又T了,把回收改成区间删除才过

复杂度O((n+m)logm)也就是一个log,但是貌似被我实现成了两个log,感谢出题人不杀之恩

开了四棵线段树,树状数组常数比较小,最后也过了,讲一下中间遇到的各个做法

60分题解(O(n^2+nm)暴力)

按右端点增序枚举,假设当前枚举到的右端点为R,此时只能选右端点<=R的线段

记a[i]为对于i来说,只能选右端点<=R的线段时,能覆盖i的最大的左端点

那么,固定右端点R时,若[L,R]是一组解,一定有对于任意L<=i<=R,L<=a[i]

换言之,为了覆盖[L,R]中间的值,采用的线段,其左端点不能比L更靠左

所以,就可以一边枚举右端点,一边将线段插入,

插入一条线段[i,R]时,涉及到一段区间a值的动态修改,本质是区间[i,R]的a值和i取max

若i<j<=R,a[j]<a[i],那么,为了覆盖区间[i,R],实际左端点也需至少取到a[j]的位置

所以,实际计算贡献的时候,需要考虑后缀对当前值的影响,

维护后缀最小值,可以搞个单调栈,也可以逐项维护

后缀的数组,实际是形如1 1 1 3 3 10 10 10 10的分段阶梯数组,

值即为左端点的值,贡献为左端点出现的种类数

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int N=2e5+10;
int n,m,l,r,a[N],suf[N];
ll ans;
vector<int>f[N];
int main(){scanf("%d%d",&n,&m);for(int i=1;i<=m;++i){scanf("%d%d",&l,&r);f[r].push_back(l);}for(int i=1;i<=n;++i){for(auto &v:f[i]){for(int j=v;j<=i;++j){a[j]=max(a[j],v);}}suf[i]=a[i];ans+=(suf[i]>0);for(int j=i-1;j>=1;--j){suf[j]=min(suf[j+1],a[j]);if(suf[j]!=suf[j+1] && suf[j])ans++;}}printf("%lld\n",ans);return 0;
}

75分题解(特殊性质)

特殊性质:不存在区间的相互包含关系

就是一堆相交区间,如果把两两相交的区间合并成一个连通块,

则组成若干个连通块,且连通块内是偏序的,

一定可以选一段连续的区间,取到左区间的左端点和右区间的右端点

所以,连通块内有x个区间时,对答案的贡献是x*(x+1)/2

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int N=2e5+10;
int n,m,c,mx;
vector<int>f[N],st[N];
set<int>cur;
map<P,bool>vis;
ll ans,now[N];
struct node{int l,r;
}e[N],x;
bool operator<(node a,node b){return a.r<b.r;
}
int main(){scanf("%d%d",&n,&m);for(int i=1;i<=m;++i){scanf("%d%d",&x.l,&x.r);//e[++c]=x;if(!vis[P(x.l,x.r)])e[++c]=x;vis[P(x.l,x.r)]=1;}m=c;sort(e+1,e+m+1);if(n>3000){for(int i=1;i<=m;){int j=i,mx=e[j].r;while(j+1<=m && e[j+1].l<=mx+1){j++;mx=max(mx,e[j].r);}int sz=j-i+1;ans+=1ll*sz*(sz+1)/2;i=j+1;}printf("%lld\n",ans);}else{for(int i=1;i<=m;++i){st[e[i].l].push_back(e[i].r);}for(int i=1;i<=n;++i){if(st[i].empty())continue;cur.clear();for(auto &v:st[i])cur.insert(v);for(int j=1;j<=m;++j){if(e[j].l<i)continue;if(cur.lower_bound(e[j].l-1)!=cur.end()){int x=*cur.lower_bound(e[j].l-1);if(x<=e[j].r)cur.insert(e[j].r);}}ans+=cur.size();}printf("%lld\n",ans);}return 0;
}

100分题解(分治+线段树+树状数组)

官解里有提到并查集维护区间并,没太想明白,所以开了四棵线段树

分治之后,左区间[l,mid],右区间[mid+1,r],

考虑如何统计跨左右区间的答案,即满足l<=L<=mid且mid+1<=R<=r的(L,R)答案

先定义点术语,方便下面描述:

左半区间:[l,mid]

右半区间:[mid+1,r]

左内区间:被完整包含于[l,mid]内的区间

右内区间:被完整包含于[mid+1,r]内的区间

跨域区间:左端点位于[l,mid],右端点位于[mid+1,r]的区间

从x走到y:存在一个区间[x,y],或存在若干个区间覆盖在一起,使得左端点是x,右端点y

若(L,R)合法, 换言之,从左端点L走到右端点R,有两种情况,

1. 存在跨域区间[L,R],一步从L走到R

2. ①L通过左内区间走若干步,走到[l,mid]内最靠右的位置,记为a[L]

②对称后,是相遇问题,R通过右内区间走若干步,走到[mid+1,r]最靠左的位置,记为a[R]

③L通过一个跨域区间(跨域区间左端点在[L,a[L]+1]内),走到[mid+1,r]内最靠左位置,记为b[L]

④R通过一个跨域区间(跨域区间右端点在[a[R]-1,R]内),走到[l,mid]内最靠右位置,记为b[R]

⑤[L,b[L]]和[b[R],R]两个区间,需要满足覆盖在一起后是[L,R],

因为,b[L]<=mid<mid+1<=b[R],所以,区间相交是自然满足的 

还需满足b[L]<=R且L<=b[R],这是一个静态二维数点问题,可用树状数组或cdq分治解决

①-②步用了一棵线段树seg,区间查询,单点更新

左半边递减遍历维护最大值,右半边递增遍历维护最小值

③用了一棵线段树lseg,单点更新,维护左端点在[l,mid+1]内,右端点在右半区间的右端点最小值

④用了一棵线段树rseg,单点更新,维护右端点在[mid,r]内,左端点在左半区间的左端点最大值

[l,mid+1]是因为[L,a[L]+1],比如,[1,2]和[3,4]也可以覆盖[1,4];[mid,r]同理

因为③④区间有交集,且和①②维护的信息不同,所以各开了一棵线段树

外层已经是分治了,内层就不cdq分治了,⑤这里采用树状数组的方式解决

形如(L,b[L])和(b[R],R)的二维点对,按第一维排增序,

第一维相同时,先插入再查询,左半边插入到b[L]位置,右半边查询区间[b[R],R]

由于b[R]<=mid<b[L]恒成立,所以直接查sum(R)就可以

此外,注意到1和2的①②③④的情况,都不一定存在,所以需要分别判一下不存在的情况,

当然,如果用INF和-INF配合max min之后,能统一写法的话最好

分治为了使复杂度正确,每次使用完线段树之后需要手动回收,

对树状数组手动-1,撤销操作;对线段树[l,r]段区间删除打标记,

由于维护的是最大最小值,删除后,最大值为-INF,最小值为INF

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define SZ(x) (int)x.size()
#define fi first
#define se second
const int N=2e5+10,INF=0x3f3f3f3f;
int n,m,l,r,a[N],b[N];
vector<int>L[N],R[N];
ll ans;
struct segtree{int n;struct node{int l,r,c,mn,mx;}e[N<<2];#define l(p) e[p].l#define r(p) e[p].r#define c(p) e[p].c#define mn(p) e[p].mn#define mx(p) e[p].mxvoid up(int p){mn(p)=min(mn(p<<1),mn(p<<1|1));mx(p)=max(mx(p<<1),mx(p<<1|1));}void bld(int p,int l,int r){l(p)=l;r(p)=r;c(p)=0;if(l==r){mn(p)=INF;mx(p)=-INF;return;}int mid=l+r>>1;bld(p<<1,l,mid);bld(p<<1|1,mid+1,r);up(p);}void init(int _n){n=_n;bld(1,1,n);}void chg(int p,int x,int v){if(l(p)==r(p)){mn(p)=min(mn(p),v);mx(p)=max(mx(p),v);return;}int mid=l(p)+r(p)>>1;psd(p);chg(p<<1|(x>mid),x,v);up(p);}void psd(int p){if(c(p)){mn(p<<1)=INF;mx(p<<1)=-INF;c(p<<1)=c(p);mn(p<<1|1)=INF;mx(p<<1|1)=-INF;c(p<<1|1)=c(p);c(p)=0; }}void del(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr){mn(p)=INF;mx(p)=-INF;c(p)=1;return;}psd(p);int mid=l(p)+r(p)>>1;if(ql<=mid)del(p<<1,ql,qr);if(qr>mid)del(p<<1|1,ql,qr);up(p);}int amn(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mn(p);int mid=l(p)+r(p)>>1,res=INF;psd(p);if(ql<=mid)res=min(res,amn(p<<1,ql,qr));if(qr>mid)res=min(res,amn(p<<1|1,ql,qr));return res;}int amx(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mx(p);int mid=l(p)+r(p)>>1,res=-INF;psd(p);if(ql<=mid)res=max(res,amx(p<<1,ql,qr));if(qr>mid)res=max(res,amx(p<<1|1,ql,qr));return res;}
}seg,lseg,rseg;
struct BitPre{int n,tr[N];void init(int _n){n=_n;memset(tr,0,(n+1)*sizeof(*tr));}void add(int x,int v){for(int i=x;i<=n;i+=i&-i)tr[i]+=v;}int ask(int x){if(x<0)return 0;int ans=0; for(int i=x;i;i-=i&-i)ans+=tr[i];return ans;}
}tr;
bool ok(int x){return x!=INF && x!=-INF;
}
bool in(int x,int l,int r){return l<=x && x<=r;
}
void cdq(int l,int r){if(l==r)return;int mid=(l+r)/2;cdq(l,mid);cdq(mid+1,r);for(int i=mid;i>=l;--i){a[i]=-INF;b[i]=INF;for(auto &v:L[i]){if(v>r)continue;if(v<=mid)a[i]=max(a[i],v);else b[i]=min(b[i],v);//有无需本侧的情况if(v>=mid)rseg.chg(1,v,i);}if(ok(a[i])){a[i]=max(a[i],seg.amx(1,i,min(mid,a[i]+1)));seg.chg(1,i,a[i]);}}for(int i=mid+1;i<=r;++i){a[i]=INF;b[i]=-INF;for(auto &v:R[i]){if(v<l)continue;if(v>=mid+1)a[i]=min(a[i],v);else b[i]=max(b[i],v);if(v<=mid+1)lseg.chg(1,v,i);}if(ok(a[i])){a[i]=min(a[i],seg.amn(1,max(mid+1,a[i]-1),i));seg.chg(1,i,a[i]);}}vector<array<int,3>>all;for(int i=mid;i>=l;--i){if(ok(a[i])){ // [i,a[i]+1]int v=lseg.amn(1,i,a[i]+1);if(in(v,mid+1,r)){b[i]=min(b[i],v);}}if(in(b[i],mid+1,r))all.push_back({i,0,b[i]});}for(int i=mid+1;i<=r;++i){if(ok(a[i])){ // [a[i]-1,i]int v=rseg.amx(1,a[i]-1,i);if(in(v,l,mid)){b[i]=max(b[i],v);}}if(in(b[i],l,mid))all.push_back({b[i],1,i});}sort(all.begin(),all.end());for(auto &w:all){int op=w[1],ub=w[2];if(op==0)tr.add(ub,1);else ans+=tr.ask(ub);//左[l,a[l]]右[a[r],r],满足l<=a[r]<=a[l]+1且a[r]-1<=a[l]<=r,a[l]<=mid<mid+1<=a[r]显然成立}seg.del(1,l,r);lseg.del(1,l,r);rseg.del(1,l,r);for(auto &w:all){int op=w[1],ub=w[2];if(op==0)tr.add(ub,-1);}
}
int main(){scanf("%d%d",&n,&m);seg.init(n);lseg.init(n);rseg.init(n);tr.init(n);for(int i=1;i<=m;++i){scanf("%d%d",&l,&r);//重复无所谓L[l].push_back(r);R[r].push_back(l);}cdq(1,n);printf("%lld\n",ans);return 0;
}
/*
9 4
1 4
1 8
3 9
2 5
*/

写在最后

感觉数据结构有点多了,写起来比较疲惫

四五题连放两个数据结构,有点不太像之前csp的风格

反观之前的第三题大模拟,本次变成中模拟了

anyway,完结, 撒花!


http://chatgpt.dhexx.cn/article/LIE8UgY7.shtml

相关文章

谈一下两次CSP认证从180分到380分的感想

最近联系我的小可爱们比较多&#xff0c;我用qq建了一个ccf csp考试交流群&#xff0c;群号673612216&#xff0c;如果感觉有用可以加一下哦~~ 欢迎访问我的CCF认证考试题解目录哦 https://blog.csdn.net/richenyunqi/article/details/83385502&#xff0c;目前正在准备考研&am…

第22次 CCF CSP认证一二题题解及感悟

第22次 CCF CSP认证一二题题解及感悟 第一题灰度直方图题目重述题目分析代码及注释&#xff08;C&#xff09; 第二题邻域均值题目重述题目分析代码及注释&#xff08;C&#xff09;感悟 第一题灰度直方图 题目重述 一幅长宽分别为 n 个像素和 m 个像素的灰度图像可以表示为一…

CCF CSP认证2022年12月题解 现值计算、训练计划、JPEG 解码

题目 http://118.190.20.162/home.page T1 现值计算 思路 根据题意第 k k k年的 x x x元的当前价值为 x ( 1 i ) − k x\times (1i)^{-k} x(1i)−k计算各个价值&#xff0c;最后求和。 代码 int main() {int n; double i;scanf("%d %lf", &n, &i);i…

第29次CCFCSP认证经验总结

鄙人有幸参加了由中国计算机学会举办的第29次计算机软件能力认证考试&#xff0c;在此进行一些考试细节和经验的总结。 如果没有仔细了解过的小白去网上搜索CCFCSP&#xff0c;可能出现的是CSP-J/S&#xff0c;但是详细了解会发现&#xff0c;首先CSP-J/S分初试和复试&#xff…

第28次csp认证T3 JPEG 解码解析

第28次csp认证T3 JPEG 解码解析 题目说明 问题比较长&#xff0c;就只放个链接吧&#xff1a;http://118.190.20.162/view.page?gpidT158 经验分享 做这种大模拟的题目&#xff0c;对于经验不是很丰富的新手来说&#xff0c;更应该着眼于得分点&#xff0c;先做那些问题简单、…

csp认证考试准备Day-3

昨天复习了一点点&#xff0c;今天浅浅做几个第一道的真题吧 &#xff08;1&#xff09;202212-1 #include<bits/stdc.h> using namespace std; int main() {double n,i,b;scanf("%lf", &n);scanf("%lf", &i);double a[60];for(int j0;j<…

csp认证考试准备Day-1

今天&#xff0c;开启了我的第一个专栏&#xff0c;用来记录我的2023年3月的csp认证考试。 语言&#xff1a;c 本人状况&#xff1a;半学期几乎没敲过代码&#xff0c;学过c和数据结构&#xff0c;csp第一题应该能做出来。 目标&#xff1a;保证在csp考试时做出一二题&#…

第23次CSP认证题解

这是我第一次参加CSP&#xff0c;一共得了260分&#xff0c;100,70,70,20,0。这两天试着写一下题解&#xff0c;大家哪里看不懂直接留言问我就好。 目录 第一题&#xff1a;数组推导&#xff08;100分&#xff09;第二题&#xff1a;非零段划分&#xff08;100分&#xff09;第…

csp认证真题

出行计划 要在t时刻进入场所&#xff0c;获得核酸检测结果的时间点&#xff08;tk应该在[t-c1,t]内&#xff08;上段文字中c值为24&#xff09;&#xff0c;核酸检测结果才能生效。由于获得核酸检测结果的时刻>1&#xff08;因为等待核酸检测结果的时间k>0&#xff0c;所…

【经验】CCF CSP认证问题

202109-4收集卡牌 状压dp&#xff0c;注意保留10位小数&#xff0c;是样例里给出的最长的&#xff0c;五位也不行&#xff0c;double保留到小数点后15位以后就不准了 202104-2 邻域均值 要利用前缀和&#xff0c;不然会超时 202012-2 期末预测之最佳阈值 也是要利用前缀和&…

有关CCF的CSP认证

有关CCF的CSP认证 一、CSP认证考点的知识要求 在数据结构中&#xff0c;线性表是基础&#xff0c;树是常考点&#xff0c;集合和映射要夕纪学。 背包问题&#xff08;动态规划&#xff09; 考试要求 二、考试题型 第一题&#xff1a;一般为水题&#xff0c;把C学扎实便可…

记 CSP 认证

欢迎访问我的CCF认证解题目录 现在越来越忙了&#xff0c;估计后面也不参加了&#xff0c;纯粹是记录贴。 先晒一下成绩吧&#xff0c;至于为什么参加这么多次&#xff0c;主要是学校可以报销&#xff0c;干就完了&#xff0c;哈哈。 分别是 17、18、20、21 第一次参加 c…

CSP认证

【CSP】试题编号 202212-2-训练计划 题目&#xff1a;训练计划计算最早/最晚开始时间最早开始时间发散最晚开始时间 代码与上机代码上机结果 题目&#xff1a;训练计划 此题目样例有坑&#xff1a;样例中没有正确输出过一个最晚开始时间 所以在最开始处理问题的时候&#xff0…

CCF CSP认证

文章目录 :heart:[CCF CSP认证 (cspro.org)](https://www.cspro.org/):heart:1.主办单位2.认证目的3.认证内容4.认证方式5.准备认证上机环境6. 选择考试语言7. 选择编译环境8. 选择IDE9.认证前模拟练习10.成绩效力&#xff1a; ❤️CCF CSP认证 (cspro.org)❤️ 1.主办单位 中…

四大含金量高的算法证书考试

证书考试推荐 一、PAT 计算机程序设计能力测试二、CCF CSP认证三、团体程序设计天梯赛四、蓝桥杯大赛 一、PAT 计算机程序设计能力测试 官网&#xff1a;PAT 计算机程序设计能力测试 PAT为浙江大学出的一款程序设计的测试网站&#xff0c;分为乙级、甲级、顶级三种&#xff0…

2阶实对称矩阵特征值和特征向量的简单求解方法

2阶实对称矩阵特性 定理&#xff1a;2阶实对称矩阵H的特征值是实数 H[a,b;b,c] a,b,c是实数&#xff0c;λ 是特征值 A[a-λ,b;b,c-λ] 特征值求解方法为&#xff1a;(a- λ )(c- λ) - b2 0 求解方程得到两个根为&#xff1a;λ&#xff08;ac&#xff09;&…

求解矩阵特征值的QR算法

1. 算法原理介绍&#xff1a; 1. Householder变换&#xff1a; 2. Givens变换&#xff1a; 3. 矩阵的QR分解 4. 计算特征值的QR方法 5. 上Hessenberg矩阵方法&#xff1a; 2. 实施过程&#xff1a; 1. 约化过程&#xff1a; 1. Householder变换&#xff1a; 2. Givens变换&a…

【OpenCV4】计算对称矩阵特征值和特征向量 cv::eigen() 用法详解和代码示例(c++)

函数原型&#xff1a; bool cv::eigen ( InputArray src,OutputArray eigenvalues,OutputArray eigenvectors noArray() ) 解析&#xff1a; src&#xff1a;输入矩阵&#xff0c;只能是 CV_32FC1 或 CV_64FC1 类型的方阵&#xff08;即矩阵转置后还是自己&#xff09;eig…

实对称矩阵的特征值求法_线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解...

线性代数中的二次型,实际上是特征值的几何应用,概念仍需加强理解 二次型:实际上是特征值的几何应用 1、二次型化标准形:特征值、特征向量、相似对角化 2、二次型的正定性 3、合同:坐标变换 正交变换化二次型为标准形,标准为求二次型矩阵 A 的特征值,求坐标变换就是求 A 的特…

实对称矩阵的特征值求法_矩阵论系列——特征值篇

特征值篇1——特征值和特征向量 特征值篇1--特征值和特征向量_thompson的博客-CSDN博客​blog.csdn.net 特征值篇2——特征子空间 特征值篇2--特征子空间_thompson的博客-CSDN博客​blog.csdn.net 特征值篇3——矩阵可相似对角化的充要条件 特征值篇3--矩阵可相似对角化的充要条…