概率论 随机变量及常用6大分布整理

article/2025/11/10 23:56:39

随机变量

随机变量定义:
样本空间为Ω,随机变量X表示样本空间Ω中的一个样本点(样本空间和随机变量的关系类似于实数轴上的x轴和自变量x的区别)。如随机抛掷一枚骰子,X就是表示骰子的点数。

分布函数

分布函数定义:
F(X)=P(X<=x)
离散型随机变量的分布函数:
在这里插入图片描述
连续性随机变量的分布函数:

在这里插入图片描述
分布函数的性质:
1.非降性
F(x)是一个非递减函数
2.归一性
在x趋向于+∞时,F(x)趋向于1
3右连续性
因为 F(x)是单调有界非减函数,所以其任一点x0的右极限F(x0+0)必存在。

数学期望

在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

离散型随机变量的期望:
在这里插入图片描述
连续型随机变量的期望:
在这里插入图片描述
性质:
1.E©=C
2.E(CX)=CE(X)
3.E(X+Y)=E(X)+E(Y)
4.当X和Y相互独立时,E(XY)=E(x)E(y)

方差

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
D(x)=E ( ( X-E( X ) )2)

离散型变量的方差:
在这里插入图片描述
随机型变量的方差:
在这里插入图片描述
展开上式可得:
在这里插入图片描述
性质L:
D©=0
D(CX)=C2D(X)
D(X±Y)=D(X)+D(Y)±2E( (X-E(X))*(Y-E(Y)) )
若X,Y相互独立,则D(X±Y)=D(X)+D(Y)

离散型随机变量三大常见分布:

1.两点分布(伯努利分布)
定义:
一个非常简单只有两个可能结果的试验,比如正面或反面,成功或失败,有缺陷或没有缺陷,病人康复或未康复。记为X~(0,1)

分布律:

X01
P(1-p)p

性质:
期望E(X)=p
方差D(X)=p(1-p)

2.二项分布
定义:
在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。
可以简单理解为多次抛硬币事件的概率分布。
记做X~b(n,p)

分布律:

X01。。。k
PC0p0(1-p)(n)C1p1(1-p)(n-1)。。。Ckpk(1-p)(n-k)

性质:
期望E(X)=np
方差D(X)=np(1-p)
就是在两点分布的基础上乘以一个n

泊松分布:
定义:
二项分布的近似解,当n非常大,p非常小,计算十分复杂时,可以用泊松公式求近似解。(n>200,p<0.05) 记做X~P(λ)

概率函数:
λ表示数学期望,即np
k表示事件发生的次数
在这里插入图片描述
性质:
期望E(X)=λ=np
方差D(X)=λ

均匀分布
定义:
均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为X~U(a,b)。

概率密度函数:
a表示区间上界,b表示区间下界
在这里插入图片描述
性质:
期望E(X)=(a+b)/2
方差D(X)=(b-a)2/12

指数分布:
定义:
指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。记做X~ E(λ)

概率密度函数:
λ表示期望的倒数
在这里插入图片描述
性质
期望E(X)=1/λ
方差D(X)=1/λ2

正态分布(高斯分布)
定义:
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为X~N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

概率密度函数:
在这里插入图片描述
标准化:

将Y化为x的形式,转换为标准正态分布,方便查表计算。也可以用来算μ和σ。
F((96-0.5)/σ)=0.05,查表的到(96-0.5)/σ=2,可以求得σ。
在这里插入图片描述
性质
期望E(X)=μ
方差D(X)=σ2

到这里概率论的基础就完结了,开始上数理统计部分了。概率论对深度学习帮助挺大的,主要是帮助理解概念,方便搭建更优化的神经网络。


http://chatgpt.dhexx.cn/article/ICBBhOIg.shtml

相关文章

随机变量分布和概率

N.1 随机变量分布 1&#xff09;正态分布(高斯分布&#xff0c;用的比较多) 这里句一个例子&#xff0c;小明有一枚筛子&#xff0c;但它不是六个面的&#xff0c;而是数不清多的面(即每一面都有个点对应点数)&#xff0c;但塞子的外形不均匀的&#xff0c;所以扔筛子有些点数的…

任意分布的随机数的产生方法

摘要&#xff1a; 随机数在实际运用中非常之多&#xff0c;如游戏设计&#xff0c;信号处理&#xff0c;通常我们很容易得到平均分布的随机数。但如何根据平均分布的随机数进而产生其它分布的随机数呢&#xff1f;本文提出了一种基于几何直观面积的方法&#xff0c;以正态分…

如何用均匀分布随机数生成正态分布随机数

文章目录 前言The Box–Muller transformThe Ziggurat algorithm(金字形神塔)附录&#xff1a;Inverse transform sampling直观解释 前言 在Monte Carlo模拟技术中&#xff0c;许多地方都需要用到符合标准正态分布(高斯)的随机数来设计采样方案&#xff0c;因此了解如何用均匀…

常见的概率分布并生成随机数

一、均匀分布&#xff08;Uniform Distribution&#xff09; 在相同长度间隔的分布概率是等可能的。 1.概率密度函数&#xff1a; 2.分布函数&#xff1a; 3.期望和方差&#xff1a; 4.生成随机数 import numpy as np #生成从0-1的均匀分布 np.random.rand(10)#生成十个均匀…

生成特定分布随机数的方法

生成随机数是程序设计里常见的需求。一般的编程语言都会自带一个随机数生成函数&#xff0c;用于生成服从均匀分布的随机数。不过有时需要生成服从其它分布的随机数&#xff0c;例如高斯分布或指数分布等。有些编程语言已经有比较完善的实现&#xff0c;例如Python的NumPy。这篇…

推导:通过均匀分布来产生任意分布随机数

最近想用C语言写一个产生服从指数分布的随机数的程序。从网上找了找&#xff0c;发现可以通过均匀分布来产生服从任意分布的随机数。然而&#xff0c;网上的推导不是很完善&#xff0c;我把自己的理解写在这里&#xff0c;有不严谨的地方请大家指正。 命题1&#xff1a;对一连续…

随机数生成(一):均匀分布

引言 许多应用中都需要用到随机数&#xff0c;如物理仿真、统计采样、密码学、博彩等。随机数一般可以通过两种方法得到。一种是基于物理现象由硬件产生。由此得到的随机数&#xff0c;在产生之前是不可预知的&#xff0c;因此&#xff0c;是真正的随机数。另一种是通过计算机算…

如何产生指定分布的随机数?

参考&#xff1a;https://www.cnblogs.com/xingshansi/p/6539319.html&#xff1b;    https://www.jianshu.com/p/3d30070932a8&#xff1b;    https://blog.csdn.net/pipisorry/article/details/50615652&#xff1b;    https://cosx.org/2015/06/generating-n…

一、三大基础随机分布与数学特征

一、三大基础随机分布 均匀、指数、正态 1、均匀分布 表示在相同长度间隔的分布概率是等可能的 其概率密度、均值、方差 2、指数分布 事件以恒定平均速度连续且独立地发生的过程(泊松过程中的事件之间的时间的概率分布) 其概率密度、均值、方差 3、正态分布 常见的连续概…

AttributeError:Can only use .str accessor with string values!

修改之前&#xff1a; 出现错误&#xff1a;意为matches不是字符串则使用此方法错误 修改方法&#xff1a; 将最后两行代码改为&#xff1a;

“ Can only use .str accessor with string values!”

“ Can only use .str accessor with string values&#xff01;” 出现错误 原代码 解决办法&#xff1a;

vue3报错‘get‘ on proxy: property ‘__accessor__‘ is a read-only and non-configurable data property on t

在使用arcgis地图时候 我把map对象存进了store里面共享数据 结果其他页面使用时候 给我甩了这样一个错误 get on proxy: property __accessor__ is a read-only and non-configurable data property on the proxy target but the proxy did not return its actual value (expe…

Access数据库是什么

数据是当今社会的命脉&#xff0c;因此自然而然地&#xff0c;很多注意力都集中在不同的数据库工具上。毕竟&#xff0c;如果用户有合适的工具&#xff0c;用户就有最有效的方法来处理当前的海量数据过剩问题&#xff0c;或许还能让整个过程变得更易于管理。为此&#xff0c;本…

【ERROR Error: No value accessor for form control with unspecified name attribute】

遇到问题&#xff1a; 控制台报错如下ERROR Error: No value accessor for form control with unspecified name attribute 解决&#xff1a; [(ngModel)]不能直接加在某些标签中 需要同时加ngDefaultControl

access是干什么的软件

Access是一款数据库应用开发工具软件&#xff0c;中文名:微软办公软件-关系数据库管理系统。 access安装包 Access是微软公司于1994年发布的微机数据库管理系统。作为一种功能强大的MIS系统开发工具&#xff0c;它具有界面友好、易学易用、开发简单、界面灵活等特点&#xff0…

Access数据库有什么用?该数据库有什么功能?

对于那些想寻找一个简单的数据库管理系统的用户来说&#xff0c;微软旗下的Access数据库也许是可以让其眼前一亮的工具。 数据库基本定义 Access是Microsoft 365套件工具随附的强大生产力工具&#xff0c;该工具允许用户创建以有组织的结构存储信息的自定义数据库&#xff0c;还…

@Accessors

Accessors 作用&#xff1a;存取器&#xff0c;用于配置getter和setter方法的生成结果 三个属性&#xff1a;fluent、chain、prefix 1、fluent&#xff1a;流畅的&#xff0c;设置为true&#xff0c;getter和setter方法的方法名都是基础属性名&#xff0c;且setter方法返回当前…

使用pandas对数据提取时报错,AttributeError: Can only use .str accessor with string values!

from pandas import DataFrame from pandas import read_excel df read_excel(ri_nuc.xls,sheet_nameSheet4) df.head() 运行结果如下图 df.电话.head().str.strip() 结果出现报错 AttributeError: Can only use .str accessor with string values! 这句话翻译成&#xf…

@Accessors 注解详解

??前言1. Accessors 源码2. Accessors 属性详解2.1 fluent 属性2.2 chain 属性2.3 prefix 属性 前言 在你的工作中&#xff0c;有时候可能会看到Accessors(chain true)这样的注解&#xff0c;他是 lombok 插件包中的一个注解&#xff0c;那么它是什么意思呢&#xff1f; 1.…

lombok里的@Accessors注解

lombok里的Accessors注解 Accessor的中文含义是存取器&#xff0c;Accessors用于配置getter和setter方法的生成结果。 有三个属性 fluent–一个布尔值。如果属实&#xff0c;对于吸气pepper只是pepper()&#xff0c;并且设置器pepper(T newValue)。此外&#xff0c;除非指定…