PID整定方法

article/2025/8/30 4:53:02

转自:https://www.zhihu.com/question/27478212/answer/136494252

知乎用户    

17 人赞同了该回答

个人总结的,希望有所帮助,都是平时搜索到的,然后整理的干货

1.在不发生震荡时,增大比例系数,减小积分时间(增大积分系数)。

超调过大,则增大积分时间(减小积分系数)。若想加快响应速度则可减小积分时间(增大积分系数)。

2.确定PI系数

确定比例系数Kp,令积分时间为0,输入设定为系统最大值的60%-70%,比例系数逐渐增大,直至出现震荡,而后减小比例系数,直至震荡消失,记录此时的值,则设定值为该值的60%-70%。

确定积分系数Ki,设定一个较大的积分时间(即较小的积分系数),而后逐渐减小直至系统出现震荡,而后再继续逐渐增大积分时间(减小积分系数),直至震荡消失,设定积分时间为当前值的150%-180%。

(PS:积分系数和积分时间要注意,网上常见的位置式PID控制,积分量都是采用误差累计,这个时候是经过简化的PID,积分已经是积分系数不是积分时间,所以zaizh再整定时要注意积分系数从小往大调)

 

 

3.PID整定口诀

 

参数整定找最佳,从小到大顺序查

先是比例后积分,最后再把微分加

曲线振荡很频繁,比例度盘要放大

曲线漂浮绕大弯,比例度盘往小扳

曲线偏离回复慢,积分时间要下降

曲线波动周期长,积分时间要加长

曲线震荡频率快,先把微分降下来

动差大来波动慢,微分时间要加长

理想曲线两个波,前高后低4比1

一看二调多分析,调节质量不会低。

(以上为网上新传的口诀)

参数整定找最佳,从大到小顺次查

先是比例后积分,最后再把微分加

曲线震荡很频繁,比例度盘要放大

曲线漂浮绕大弯,比例度盘往小扳

曲线偏离回复慢,积分时间往下降

曲线波动周期长,积分时间要加长

理想曲线两个波,调节过程高质量

解释:

控制系统在设计、正定和运行中,衡量系统质量的依据就是系统的过渡过程。当系统的输入为阶跃变化时,系统的过渡过程表现为:发散震荡,灯幅震荡,衰减震荡,单调过程等形式,多数情况下,人们都希望看到衰减震荡过程,且认为下图所示的过渡过程最好,并将其作为衡量控制系统质量的依据。

图 1 最佳衰减震荡

如图 1,其可作为控制系统质量指标的理由是:其第一次恢复到给定值时较快,而后虽然又偏离了,但是偏离不大,且只有极少数几次震荡就能稳定下来。量上分析,第一个波峰B的高度为第二个波峰B

*

的4倍,故而这种曲线又称为4:1衰减曲线,在控制器工程整定时,以能得到4:1的衰减过程为最好,这是的调节器参数可称为最佳参数。

“参数整定找最佳,从小到大顺序查”

在现场调试器工程参数整定中,如果只按4:1衰减比进行整定,那么可以有很多对的比例度和积分时间同样满足4:1的衰减比,但是这些对的数值并不是任意的组合,而是成对的,一定的比例度必须与一定的积分时间组成一对,才能满足衰减比的条件,改变其中之一,另一个也要随之改变。因为是成对出现的,所以才有调节器参数的“匹配”问题。而在实际应用中只有附加一个条件,才能从多对数值中选出一对适合的数值。这一对适合的数值通常称为满足该添加条件的“最佳整定值”。“从大到小顺次查”中的“查”的意思就是找到调节器参数的最佳匹配值。而“从大到小顺次查”是说在具体操作时,先把比例度、积分时间防至最大位置,把微分时间调至为零。因为我们需要的是衰减震荡的过渡过程,并避免出现其他的震荡过程,在整定初期,把比例度放至最大位置,目的是减小调节器的放大倍数。而积分放至最大位置,目的是先把积分作用取消。把微分时间调至零也是把微分作用取消。“从大到小……”就是从大到小改变比例度或积分时间刻度,实质是慢慢的增加比例作用或积分作用的放大倍数。也就是慢慢的增加比例或积分作用的影响,避免系统出现大的震荡。最后再根据系统实际情况决定是否使用微分作用。

“先是比例后积分,最后再把微分加”

这句话是经验的整定步骤,比例作用的最基本的调节作用,口诀说的“先是比例后积分”,目的是简化调节器的参数整定,即先把积分作用取消和弱化,待系统较稳定后再投运积分作用,尤其是新安装的控制系统,对系统特性不了解时,我们要做的是先把积分作用取消,待调整好比例度,使控制系统大致稳定以后,再加入积分作用。对于比例控制系统,如果规定4:1的衰减过渡过程,则只有一个比例度能够满足这一规定,而其他的任何比例度都不可能使过渡过程的衰减比为4:1。因此,对比例控制系统只要找到能满足4:1衰减比时的比例度就行了。

在调好比例控制的基础上再加入积分作用,但积分会降低过渡过程的衰减比,则系统的稳定程度也会降低。为了保持系统的稳定程度,可增大调节器的比例度,即减小调节器的放大倍数。在实际工程中往往在整定中投入积分作用后,要把比例度增大约20%。其实质就是个比例度和积分时间数值的匹配问题,在一定范围内比例度的减小,是可以用增加积分时间的方法来补偿的,但是也要看到比例作用和积分作用是互为影响的,如果设置的比例度过大,即便积分时间恰当,系统控制效果仍然会不佳。

“曲线震荡很频繁,比例度盘要放大”

说的是比例度过小时,会产生周期较短的激烈震荡,且震荡衰减很慢,严重时甚至会成为发散震荡,如图 2所示,这是就要调大比例度,使曲线平缓下来。

 

图 2 曲线震荡频繁

“曲线篇幅绕大弯,比例度盘往小扳”

比例度过大时会使过渡时间过大,使被调参数变化缓慢,即记录曲线偏离给定幅值较大,时间较长,这时曲线波动较大且变换无规则,形状像绕大弯式的变化,如图所示,此时就要减小比例度,使余差尽量小。

 

图 3 比例度过大时的过渡过程曲线

“曲线偏离回复慢,积分时间往下降。曲线波动周期长,积分时间再加长”

当积分时间太长时,会使曲线非周期地慢慢地回复到给定值,即“曲线偏离回复慢”,则应减小积分时间,如图 4所示。当积分时间太短时,会使曲线震荡周期较长,且衰减很慢,即“曲线波动周期长”,如图 5所示,则应加长积分时间。

 

图 4 积分时间过程的过渡过程曲线

 

图 5 积分时间过短

调节器的参数按照比例积分作用整定好后,可在积分时间的0.2-0.5倍范围内调整微分时间。即“最后再把微分加”由于微分作用会增强系统的稳定性,故采用微分作用后,调节器的比例度可以适当地增大一些,一般以增大0.2为宜。微分作用主要用于滞后和惯性较大的场合,由于微分作用具有超前调解的功能,当系统有较大滞后和较大惯性的情况下,才应启用微分作用。

注意:

有几个地方需要注意:

Ø 口诀是仪表实际工作的总结,但由于历史的原因,当时仪表工所接触的大多是气动调节仪表,最早的是04型基地式气动调节仪表,后来是气动单元组合仪表,七十年代初期电动仪表在工厂的应用也是很有限的。气动仪表调比例度就是改变一个针型阀门的开度,为便于观察阀门的开度,阀门手柄上有个等分刻度盘;电动仪表调的是电位器,同样也有一个等分刻度盘;这就是口诀中的“比例刻度盘”,但是实际工程中采用比例Kp和积分Ki系数较多,该比例度同Kp成反比,前文所述的积分时间同Ki成反比。

3.摘自《自动控制的故事》

连续控制和PID

无级可调或连续可调的空调机可以精确控制温度,但开关控制不能再用了。家用空调机中,连续可调的不占多数,但冲热水淋浴是一个典型的连续控制问题,因为水龙头可以连续调节水的流量。冲淋浴时,假定冷水龙头不变,只调节热水。那温度高了,热水关小一点;温度低了,热水开打一点。换句话说,控制作用应该向减少控制偏差的方向变化,也就是所谓负反馈。控制方向对了,还有一个控制量的问题。温度高了1度,热水该关小多少呢?

经验告诉我们,根据具体的龙头和水压,温度高1度,热水需要关小一定的量,比如说,关小一格。换句话说,控制量和控制偏差成比例关系,这就是经典的比例控制规律:控制量=比例控制增益*控制偏差,偏差越大,控制量越大。控制偏差就是实际测量值和设定值或目标值之差。在比例控制规律下,偏差反向,控制量也反向。也就是说,如果淋浴水温要求为40度,实际水温高于40度时,热水龙头向关闭的方向变化;实际水温低于40度时,热水龙头向开启的方向变化。

但是比例控制规律并不能保证水温能够精确达到40度。在实际生活中,人们这时对热水龙头作微调,只要水温还不合适,就一点一点地调节,直到水温合适为止。这种只要控制偏差不消失就渐进微调的控制规律,在控制里叫积分控制规律,因为控制量和控制偏差在时间上的累积成正比,其比例因子就称为积分控制增益。工业上常用积分控制增益的倒数,称其为积分时间常数,其物理意义是偏差恒定时,控制量加倍所需的时间。这里要注意的是,控制偏差有正有负,全看实际测量值是大于还是小于设定值,所以只要控制系统是稳定的,也就是实际测量值最终会稳定在设定值上,控制偏差的累积不会是无穷大的。这里再啰嗦一遍,积分控制的基本作用是消除控制偏差的余差(也叫残差)。

比例和积分控制规律可以应付很大一类控制问题,但不是没有改进余地的。如果水管水温快速变化,人们会根据水温的变化调节热水龙头:水温升高,热水龙头向关闭方向变化,升温越快,开启越多;水温降低,热水龙头向开启方向变化,降温越快,关闭越多。这就是所谓的微分控制规律,因为控制量和实际测量值的变化率成正比,其比例因子就称为比例控制增益,工业上也称微分时间常数。微分时间常数没有太特定的物理意义,只是积分叫时间常数,微分也跟着叫了。微分控制的重点不在实际测量值的具体数值,而在其变化方向和变化速度。微分控制在理论上和实用中有很多优越性,但局限也是明显的。如果测量信号不是很“干净”,时不时有那么一点不大不小的“毛刺”或扰动,微分控制就会被这些风吹草动搞得方寸大乱,产生很多不必要甚至错误的控制信号。所以工业上对微分控制的使用是很谨慎的。

比例-积分-微分控制规律是工业上最常用的控制规律。人们一般根据比例-积分-微分的英文缩写,将其简称为PID控制。即使在更为先进的控制规律广泛应用的今天,各种形式的PID控制仍然在所有控制回路中占85%以上。

PID整定

在PID控制中,积分控制的特点是:只要还有余差(即残余的控制偏差)存在,积分控制就按部就班地逐渐增加控制作用,直到余差消失。所以积分的效果比较缓慢,除特殊情况外,作为基本控制作用,缓不救急。微分控制的特点是:尽管实际测量值还比设定值低,但其快速上扬的冲势需要及早加以抑制,否则,等到实际值超过设定值再作反应就晚了,这就是微分控制施展身手的地方了。作为基本控制使用,微分控制只看趋势,不看具体数值所在,所以最理想的情况也就是把实际值稳定下来,但稳定在什么地方就要看你的运气了,所以微分控制也不能作为基本控制作用。比例控制没有这些问题,比例控制的反应快,稳定性好,是最基本的控制作用,是“皮”,积分、微分控制是对比例控制起增强作用的,极少单独使用,所以是“毛”。在实际使用中比例和积分一般一起使用,比例承担主要的控制作用,积分帮助消除余差。微分只有在被控对象反应迟缓,需要在开始有所反应时,及早补偿,才予以采用。只用比例和微分的情况很少见。

连续控制的精度是开关控制所不可比拟的,但连续控制的高精度也是有代价的,这就是稳定性问题。控制增益决定了控制作用对偏差的灵敏度。既然增益决定了控制的灵敏度,那么越灵敏岂不越好?非也。还是用汽车的定速巡航控制做例子。速度低一点,油门加一点,速度低更多,油门加更多,速度高上去当然就反过来。但是如果速度低一点,油门就狂加,导致速度高一点,油门再狂减,这样速度不但不能稳定在要求的设定值上,还可能失控。这就是不稳定。所以控制增益的设定是有讲究的。在生活中也有类似的例子。国民经济过热,需要经济调整,但调整过火,就要造成“硬着陆”,引起衰退;衰退时需要刺激,同样,刺激过火,会造成过热。要达成“软着陆”,经济调整的措施需要恰到好处。这也是一个经济动态系统的稳定性问题。

实际中到底多少增益才是最合适的,理论上有很多计算方法,但实用中一般是靠经验和调试来摸索最佳增益,业内行话叫参数整定。如果系统响应在控制作用后面拖拖沓沓,大幅度振荡的话,那一般是积分太过;如果系统响应非常神经质,动不动就打摆子,呈现高频小幅度振荡的话,那一般是微分有点过分。中频振荡当然就是比例的问题了。不过各个系统的频率都是不一样的,到底什么算高频,什么算低频,这个几句话说不清楚,应了毛主席那句话:“具体情况具体分析”,所以就打一个哈哈了。

再具体说起来,参数整定有两个路子。一是首先调试比例增益以保证基本的稳定性,然后加必要的积分以消除余差,只有在最必要的情况下,比如反映迟缓的温度过程或容量极大的液位过程,测量噪声很低,才加一点微分。这是“学院派”的路子,在大部分情况下很有效。但是工业界有一个“歪路子”:用非常小的比例作用,但大大强化积分作用。这个方法是完全违背控制理论的分析的,但在实际中却是行之有效,原因在于测量噪声严重,或系统反应过敏时,积分为主的控制规律动作比较缓和,不易激励出不稳定的因素,尤其是不确定性比较高的高频部分,这也是邓小平“稳定压倒一切”的初衷吧。

在很多情况下,在初始PID参数整定之后,只要系统没有出现不稳定或性能显著退化,一般不会去重新整定。但是要是系统不稳定了怎么办呢?由于大部分实际系统都是开环稳定的,也就是说,只要控制作用恒定不变,系统响应最终应该稳定在一个数值,尽管可能不是设定值,所以对付不稳定的第一个动作都是把比例增益减小,根据实际情况,减小1/3、1/2甚至更多,同时加大积分时间常数,常常成倍地加,再就是减小甚至取消微分控制作用。如果有前馈控制,适当减小前馈增益也是有用的。在实际中,系统性能不会莫名其妙地突然变坏,上述“救火”式重新整定常常是临时性的,等生产过程中的机械或原料问题消除后,参数还是要设回原来的数值,否则系统性能会太过“懒散”。

对于新工厂,系统还没有投运,没法根据实际响应来整定,一般先估计一个初始参数,在系统投运的过程中,对控制回路逐个整定。我自己的经验是,对于一般的流量回路,比例定在0.5左右,积分大约1分钟,微分为0,这个组合一般不致于一上来就出大问题。温度回路可以从2、5、0.05开始,液位回路从5、10、0开始,气相压力回路从10、20、0开始。既然这些都是凭经验的估计,那当然要具体情况具体分析,不可能“放之四海而皆准”。

微分一般用于反应迟缓的系统,但是事情总有一些例外。我就遇到过一个小小的冷凝液罐,直径才两英尺,长不过5英尺,但是流量倒要8-12吨/小时,一有风吹草动,液位变化非常迅速,不管比例、积分怎么调,液位很难稳定下来,常常是控制阀刚开始反应,液位已经到顶或到底了。最后加了0.05的微分,液位一开始变化,控制阀就开始抑制,反而稳定下来了。这和常规的参数整定的路子背道而驰,但在这个情况下,反而是“唯一”的选择,因为测量值和控制阀的饱和变成稳定性主要的问题了。


http://chatgpt.dhexx.cn/article/GjRP7kGV.shtml

相关文章

PID参数整定方法介绍

文章目录 完全经验法等幅振荡法衰减曲线法响应曲线法 完全经验法 这种方法没有任何定量规律可循,凭借的是工程技术人员对控制系统与控制对象的工作机理、工作环境的熟悉,是一种粗糙的调参方法,一些定性的调参准则如下: 参数整定…

PID控制算法与参数整定,用这几招轻松搞定!

关注、星标公众号,不错过精彩内容 直接来源:21ic电子网 之前给大家分享过PID基础理论的文章: 重温经典PID算法 PID原理和参数调试 今天进一步分享一些PID相关细节内容。 在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的…

IBIS建模——第2部分:为何以及如何创建您自己的IBIS模型

IBIS建模——第2部分:为何以及如何创建您自己的IBIS模型 【导读】本文提供有关在创建IBIS模型时如何使用LTspice的说明指南,涵盖从IBIS预建模程序到IBIS模型验证的整个过程。本文还详细介绍如何在LTspice中为IBIS模型准确提取I-V、V-T、斜坡和C_comp数据…

这么说IBIS模型,你应该就懂了

读datasheet最高深的境界,不仅要看datasheet上的内容,凡是涉及到的算法,协议,配合器件,都要懂,要善于做延展辅助阅读,甚至看清楚芯片背后的设计哲学。听说要写个datasheet简单的三四个月&#x…

学习笔记二:IBIS模型编辑报错纠正

新建IBIS文件后,写好了相应的IBIS模型文件。 写好文件后,最好要检查下是否符合ibis语法。 注意: 第一点:IBIS头文件的[File name],此处名称需要和文件名称相同,同时名称字符数需在12个字符之内。否则会报错…

Cadence Allegro 17.4 IBS文件处理(IBIS模型)

Cadence Allegro 17.4 IBS文件处理(IBIS模型) IBIS(Input/Output Buffer Informational Specifation)是用来描述IC器件的输入、输出和I/OBuffer行为特性的文件,并且用来模拟Buffer和板上电路系统的相互作用。在IBIS模型里核心的内容就是Buffer的模型,因为这些Buffer产生…

Candence PCB Si 仿真设计篇前导:IBIS模型与PKG介绍

最近在做项目时遇到了一个信号SI问题,想自己动手仿真一下,就自己研究了一下如何用Candece 下面的Allegro Sigrity SI进行PCB板级链路仿真:在仿真之前我们要做的第一个准备工作就是准备需要仿真的器件模型:IBIS模型以及PKG文件。 1…

数据传输完整性_基于IBIS模型的FPGA信号完整性仿真验证方法

人工智能与深度学习等领域的快速发展,使得FPGA等器件应用范围愈加广泛,同时也要求器件的开关速率加快、引脚数量增多。但陡峭的时钟边沿和增加的引脚数使得杂散、耦合、寄生电容电感会对器件产生诸多信号完整性(Signal Integrity,SI)问题。这…

Candence PCB Si 仿真设计篇1:为仿真文件添加ibis模型

软件版本:cadence 16.6 仿真拓扑如下: 本章节主要完成对上述目标仿真拓扑中的PLL时钟芯片和FPGA完成IBIS模型的配置; 1.打开cadence PCB SI GXL; 2.在PCB SI GXL中打开板级文件.brd文件 3.在PCB SI GXL菜单栏Analyze-》Signal …

Cir 和 IBIS模型的使用

Cir 和 IBIS模型的使用在Analog上,很多时候下载到的是 cir和ibs 文件,那么如何使用呢。Cadence 中的pspice套件中含有编辑模型的程序模块,可以使用它进行转换,得到Capture库文件(olb格式) 和 Pspice 库文件…

Vivado使用技巧(17):创建IBIS模型

IBIS模型概述 IBIS是一种器件模型标准,允许使用行为模型进行开发,这些行为模型描述了器件内部互联的信号。IBIS模型保留专用的电路信息,不像SPICE这种结构化模型,IBIS模型是基于测量或电路仿真得到的 V/I曲线数据。 每个IOB标准…

信号完整性分析学习--13--IBIS模型(2)

IBIS模型除了用于SI仿真,我们还可以从IBIS模型中得到一些有用的东西,如信号上升时间,输出阻抗以及封装延时等等。 从IBIS模型中可以获得信号上升时间信息 IBIS模型中的关键字[Ramp]定义了buffer输出的上升下降沿的斜率。如下为micron的DDR3芯…

初识IBIS模型

关注、星标公众号,精彩内容每日送达 来源:网络素材 半导体LSI的EDA模型之一是"IBIS模型",完整称为Input/Output Buffer Information Specification,是一个描述数字IC输入端和输出端电气特性的文本文件,在电路…

Cadence PCB仿真 使用Allegro PCB SI为BRD文件创建通用型IBIS模型的方法图文教程

⏪《上一篇》   🏡《总目录》   ⏩《下一篇》 1,概述 本文简单介绍使用Allegro PCB SI软件为BRD PCB设计文件中的元器件创建IBIS模型的方法。 2,创建方法 第1步:确定打开PCB文件的软件是 Allegro PCB SI 如果不是Allegro PCB SI,可执行File→Change Editor…更换软…

FPGA之IBIS模型编辑实战攻略

通常我们获得的FPGA IBIS模型是这款芯片的通用模型,在信号完整性仿真中使用起来,很不方便。究其原因,其实就是管脚映射不对。每个FPGA在实际应用时,都会根据产品功能、单板空间等情况,对FPGA的管脚做一个重新定义&…

Cadence PCB仿真使用Allegro PCB SI 创建含差分对网络元器件的IBIS模型图文教程

⏪《上一篇》   🏡《总目录》   ⏩《下一篇》 1,概述 本文简单介绍使用Allegro PCB SI软件为BRD PCB设计文件中的含有差分对网络的元器件创建IBIS模型的方法。 2,创建方法 第1步:确定打开PCB文件的软件是 Allegro PCB SI 如果不是Allegro PCB SI,可执行File→Chan…

高速电路设计与仿真之Model Integrity篇(IBIS模型介绍)

工欲善其事必先利其器,高速电路的仿真离不开的就是Model Integrity仿真工具,而Model Integrity仿真用到的模型就是IBIS模型文件。使用Model Integrity不仅可以用来浏览模型,还可检查IBIS模型或DML模型(Cadence的模型格式&#xff…

信号完整性学习笔记-IBIS模型

1.IBIS模型是一种基于V/I曲线的对I/O Buffer 快速准确建模的方法,是反映芯片驱动和接收电气特性的一种国际标准,提供一种标准的文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应的计算和仿真。…

IBIS模型参数

IBIS模型参数 作者:AirCity 2020.2.1 Aircity007sina.com 本文所有权归作者Aircity所有 下面是一个典型的IBIS模型,包括了各种参数符号。你在IBIS模型中看到的参数都在下面表示出来了。 PMOS导通,NMOS关闭,输出1;NMO…

Cadence导入IBIS模型用于仿真

SPICE模型库网址 查找SPICE模型的最佳位置是浏览供应商或制造商的网站,以下是部分常用的网址。 1、ADI https://www.analog.com/en/design-center/simulation-models/spice-models.html# 2、TI http://www.ti.com/design-resources/design-tools-simulation/models…