数据处理方法:归一化与标准化处理

article/2025/8/14 19:13:13

在数据挖掘中,在建模前需要对数据进行预处理,预处理方法包括归一化与标准化,对数据进行缩放。

1.归一化(Normalization)
  • 将数据缩放到0-1之间
  • 线性(常用)归一化:最大最小值归一化, y = x − m i n ( x ) m a x ( x ) − m i n ( x ) y=\frac{x - min(x)}{max(x) - min(x)} y=max(x)min(x)xmin(x)
  • 其他或者非线性
2.标准化(Standardization)
  • 将数据按比例缩放,使之落入一个小的特定区间
  • z-score方法:去均值除标准差 y = x − μ σ = x − n p . m e a n ( x ) n p . s t d ( x ) y=\frac{x - \mu}{\sigma} = \frac{x - np.mean(x)}{np.std(x)} y=σxμ=np.std(x)xnp.mean(x)
  • 该方法使得数据被标准化到均值为0,方差为1的标准正态分布,非常适合统计学中满足各种条件
  • 而z-score本身也有特定的含义,是一种可以看出某分数在分布中相对位置的方法
  • 对数标准化 y = 1 1 + e − x y = \frac{1}{1 + e^{-x}} y=1+ex1
3. 归一化与标准化的区别与优缺点

在这里插入图片描述

归一化与标准化的相同点:
  1. 联系:归一化广义上是包含标准化的,Z-Score方法也是归一化的方法之一,在这里主要是从狭义上,区分两者
  2. 本质上都是进行特征提取,方便最终的数据比较认识.都通过先平移(分子相减)后缩放(分母)进行进行提取;
  3. 都是为了缩小范围.便于后续的数据处理. 作用:(重点)
    i) 加快梯度下降,损失函数收敛—速度上
    ii) 提升模型精度–也就是分类准确率.(消除不同量纲,便于综合指标评价,提高分类准确率)—质量上
    iii) 防止梯度爆炸(消除因为数据输入差距(1和2000)过大,而带来的输出差距过大(0.8,999),进而在 反向传播的过程当中,导致梯度过大(因为反向传播的过程当中进行梯度计算,会使用的之前对应层的输入x),从而形成梯度爆炸)—稳定性上
归一化场景

A. 除非本来各维数据的分布范围就比较接近,否则必须进行标准化,以免模型参数被分布范围较大或较小的数据支配
B. 数据分布差异比较大–标准化和奇异数据(单个有影响的也要)–归一化

特征/数据需要归一化的场景①logistic regression模型:逻辑回归,虽然迭代若几次没有影响,但实际当中远不止若干次,这样就会导致逻辑回归模型的目标函数过于扁化,导致梯度很难下降,不容易得到较好的模型参数.②SVM模型:因为涉及到向量/数据的距离(向量之间差异过大/过小,就会导致最佳分离超平面可能会由最大/远或者最小/近的几个向量支配,导致鲁棒性较差,因此需要进行标准化—可以保留向量间的模型)③NeuralNetwork模型:初始输入值过大,反向传播时容易梯度爆炸(上面有解释)④SGD:加快梯度下降.
  1. 不需要归一化的场景
  • 0/1取值的特征通常不需要归一化,归一化会破坏它的稀疏性
  • 决策树,原因详见:https://www.julyedu.com/question/big/kp_id/23/ques_id/923
  • 基于平方损失的最小二乘法OLS不需要归一化(因为本质上是一个抛物线,强凸函数,下降速度快.)

http://chatgpt.dhexx.cn/article/FUIFLOpY.shtml

相关文章

【python学习】数据预处理-如何归一化?

作者:代码律动 链接:数据预处理的归一化手段应该如何应用到训练集,测试集和验证集中? - 知乎 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 作者:Orginal 链…

一文速学-数据预处理归一化详细解释

目录 一、为何要进行数据预处理? 二、数据标准化 1.归一化的目标 2.归一化的优点 3.哪些算法并不需要归一化 三、数据归一化方法 1.min-max标准化 2.Z-score标准化 3.Sigmoid函数: 总结 一、为何要进行数据预处理? 1.任何收集而来…

机器学习中的特征工程

机器学习中的特征工程 什么是特征工程 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。 构…

【特征工程】特征衍生+案例

问:特征衍生上千、万的变量,是怎么做的? 问:大家是如何衍生出成千上万个变量的?衍生变量是怎么生成的? 研习社-上海-桂浩: 请教一个问题,大家是如何衍生出成千上万个变量的?衍生变量…

细说:特征工程 - Feature Engineering

转载至http://www.csuldw.com/2015/10/24/2015-10-24%20feature%20engineering/ 先来一张思维导图: 坊间常说:“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”。由此可见,特征工程在机器学习中占有相当重要…

机器学习——特征工程

目录 特征工程 特征构造 特征选择 特征提取 模拟训练 训练数据收集方法 特征工程 特征工程就是一个从原始数据提取特征的过程,这些特征可以很好地描述这些数据,并且利用它们建立的模型在未知数据上的性能可以达到最优,最大限度减少“垃…

特征工程文章收集

1. 离散特征编码方法 数据预处理:离散特征编码方法_快乐小码农的博客-CSDN博客_离散特征编码文章目录数据预处理:离散特征编码方法无监督方法:1.序号编码OrdinalEncoder2.独热编码OneHotEncoder3.二进制编码BinaryEncoder4.计数编码CountEnco…

2022年Python自动化特征工程框架

💡 作者:韩信子ShowMeAI 📘 机器学习实战系列:https://www.showmeai.tech/tutorials/41 📘 本文地址:https://www.showmeai.tech/article-detail/328 📢 声明:版权所有,转…

数据的特征工程

数据的特征工程 1.特征工程是什么 特征工程是将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的模型准确性 2.特征工程的意义 更好的特征意味着更强的鲁棒性 更好的特征意味着只需用简单模型 更好的特征意味着更好的结果 3.…

机器学习中的特征建模(特征工程)和算法选型建模 - 以暴力破解识别为例

catalogue 1. 特征工程是什么?有什么作用? 2. 特征获取方案 - 如何获取这些特征? 3. 特征观察 - 运用各种统计工具、图标等工具帮助我们从直观和精确层面认识特征中的概率分布 4. 特征处理 - 特征清洗 5. 特征护理 - 特征预处理 6. 特征处理 …

机器学习之特征工程

机器学习之特征工程 转载自: 点击打开链接 在这个振奋人心的程序员节日里,我决定认真地写一篇文章来纪念一下自己这长达六年程序员史。o(╯□╰)o 本文是一篇关于特征工程的总结类文章,如有不足之处或理解有偏差的地方,还望多多指…

Python机器学习—特征工程

文章目录 1、数据集1.1 可用数据集1.2 scikit-learn数据集sklearn小数据集sklearn大数据集 1.3 数据集的划分数据集划分API 2.特征工程2.1特征工程包含内容 3.特征提取3.1字典特征提取3.2 文本特征提取3.3中文文本特征提取3.4 Tf-idf文本特征提取公式 4.特征预处理4.1 归一化4.…

特征工程全过程

文章目录 简介数据预处理 无量纲化 标准化区间缩放法标准化与归一化的区别对定量特征二值化对定性特征哑编码缺失值计算数据变换回顾特征选择 Filter 方差选择法相关系数法卡方检验互信息法Wrapper 递归特征消除法Embedded 基于惩罚项的特征选择法基于树模型的特征选择法总结降…

特征工程与自动特征工程

目录 1. 什么是特征工程 2. 什么是自动特征工程 2.1 自动方法有哪些 3. 文献说明 4、参考文献 1. 什么是特征工程 特征工程,是指用一系列工程化的方式从原始数据中提取出更好的数据特征,以提升模型的训练效果。特征工程是机器学习中不可或缺的一部…

特征工程常用方法

特征工程 ●特征(feature) :数据中抽取出来的对结果预测有用的信息。 ●特征的个数就是数据的观测维度 ●特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程, ●特征工程一般包括特征清…

特征工程——文本特征

目录 文本特征 1.expansion编码 2.consolidation编码 3.文本长度特征 4.标点符号特征 5.词汇属性特征 6.特殊词汇特征 7.词频特征 8.TF-IDF特征 9.LDA特征 注意: 1. 本系列所有的文章主要是梯度提升树模型展开的,抽取的特征主要为帮助梯度提升…

时间序列特征工程

关注微信公众号“时序人”获取更好的阅读体验 时间序列知识整理系列 时间序列统计分析时间序列聚类时间序列预测时间序列回归时间序列特征工程时间序列补缺时间序列异常检测 前几次的文章分享,我们了解了时间序列分析的基础方法以及预测方法。但在使用这些方法一般…

机器学习——特征工程——交互特征(多项式特征)

一、交互特征定义 两个特征的乘积可以组成一对简单的交互特征,这种相乘关系可以用逻辑操作符AND来类比,它可以表示出由一对条件形成的结果:“该购买行为来自于邮政编码为98121的地区”AND“用户年龄在18和35岁之间”。这种特征在基于决策树的…

特征工程到底是什么?

特征工程是一个过程,它首先在概念上,然后在程序上将一个原始样本转化为特征向量。它包括将一个特征概念化,然后编写程序代码,可能借助一些间接数据,将整个原始样本转化为一个特征。 4.1 为什么要进行特征工程 具体来…

什么是特征工程?如何进行特征工程?

1 特征工程是什么? 有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中…