2022年Python自动化特征工程框架

article/2025/8/15 19:33:15

💡 作者:韩信子@ShowMeAI
📘 机器学习实战系列:https://www.showmeai.tech/tutorials/41
📘 本文地址:https://www.showmeai.tech/article-detail/328
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏ShowMeAI查看更多精彩内容

特征工程(feature engineering)指的是:利用领域知识和现有数据,创造出新的特征,用于机器学习算法。

  • 特征:数据中抽取出来的对结果预测有用的信息。
  • 特征工程:使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

在业界有一个很流行的说法:数据与特征工程决定了模型的上限,改进算法只不过是逼近这个上限而已。

特征工程的目的是提高机器学习模型的整体性能,以及生成最适合用于机器学习的算法的输入数据集。

关于特征工程的各种方法详解,欢迎大家阅读 ShowMeAI 整理的特征工程解读教程。

  • 机器学习实战 | 机器学习特征工程全面解读

💡 自动化特征工程

在很多生产项目中,特征工程都是手动完成的,而且它依赖于先验领域知识、直观判断和数据操作。整个过程是非常耗时的,并且场景或数据变换后又需要重新完成整个过程。而『自动化特征工程』希望对数据集处理自动生成大量候选特征来帮助数据科学家和工程师们,可以选择这些特征中最有用的进行进一步加工和训练。

自动化特征工程是很有意义的一项技术,它能使数据科学家将更多时间花在机器学习的其他环节上,从而提高工作效率和效果。

在本篇内容中,ShowMeAI将总结数据科学家在 2022 年必须了解的 Python 中最流行的自动化特征工程框架。

  • Feature Tools
  • TSFresh
  • Featurewiz
  • PyCaret

💡 Feature Tools

📌 简介

📘Featuretools是一个用于执行自动化特征工程的开源库。 ShowMeAI在文章 机器学习实战 | 自动化特征工程工具Featuretools应用 中也对它做了介绍。

要了解 Featuretools,我们需要了解以下三个主要部分:

  • Entities
  • Deep Feature Synthesis (DFS)
  • Feature primitives

在 Featuretools 中,我们用 Entity 来囊括原本 Pandas DataFrame 的内容,而 EntitySet 由不同的 Entity 组合而成。

Featuretools 的核心是 Deep Feature Synthesis(DFS) ,它实际上是一种特征工程方法,它能从单个或多个 DataFrame中构建新的特征。

DFS 通过 EntitySet 上指定的 Feature primitives 创建特征。例如,primitives中的mean函数将对变量在聚合时进行均值计算。

📌 使用示例

💦 ① 数据与预处理

以下示例转载自 📘官方快速入门

# 安装
# pip install featuretoolsimport featuretools as ft
data = ft.demo.load_mock_customer()# 载入数据集
customers_df = data["customers"]
customers_df
sessions_df = data["sessions"]
sessions_df.sample(5)
transactions_df = data["transactions"]
transactions_df.sample(5)

下面我们指定一个包含数据集中每个 DataFrame 的字典,如果数据集有索引index列,我们会和 DataFrames 一起传递,如下图所示。

dataframes = {"customers": (customers_df, "customer_id"),"sessions": (sessions_df, "session_id", "session_start"),"transactions": (transactions_df, "transaction_id", "transaction_time"),
}

接下来我们定义 DataFrame 之间的连接。在这个例子中,我们有两个关系:

relationships = [("sessions", "session_id", "transactions", "session_id"),("customers", "customer_id", "sessions", "customer_id"),
]

💦 ② 深度特征合成

接下来我们可以通过DFS生成特征了,它需要『DataFrame 的字典』、『Dataframe关系列表』和『目标 DataFrame 名称』3个基本输入。

feature_matrix_customers, features_defs = ft.dfs(dataframes=dataframes,relationships=relationships,target_dataframe_name="customers",
)feature_matrix_customers

比如我们也可以以sessions为目标dataframe构建新特征。

feature_matrix_sessions, features_defs = ft.dfs( dataframes=dataframes, relationships=relationships, target_dataframe_name="sessions"
)
feature_matrix_sessions.head(5)

💦 ③ 特征输出

Featuretools不仅可以完成自动化特征生成,它还可以对生成的特征可视化,并说明Featuretools 生成它的方法。

feature = features_defs[18]
feature

💡 TSFresh

📌 简介

📘TSFresh 是一个开源 Python 工具库,有着强大的时间序列数据特征抽取功能,它应用统计学、时间序列分析、信号处理和非线性动力学的典型算法与可靠的特征选择方法,完成时间序列特征提取。

TSFresh 自动从时间序列中提取 100 个特征。 这些特征描述了时间序列的基本特征,例如峰值数量、平均值或最大值或更复杂的特征,例如时间反转对称统计量。

📌 使用示例

# 安装
# pip install tsfresh# 数据下载
from tsfresh.examples.robot_execution_failures import download_robot_execution_failures, load_robot_execution_failuresdownload_robot_execution_failures()
timeseries, y = load_robot_execution_failures()# 特征抽取
from tsfresh import extract_features
extracted_features = extract_features(timeseries, column_id="id", column_sort="time")

💡 Featurewiz

📌 简介

Featurewiz 是另外一个非常强大的自动化特征工程工具库,它结合两种不同的技术,共同帮助找出最佳特性:

💦 ① SULOV

Searching for the uncorrelated list of variables:这个方法会搜索不相关的变量列表来识别有效的变量对,它考虑具有最低相关性和最大 MIS(互信息分数)评级的变量对并进一步处理。

💦 ② 递归 XGBoost

上一步SULOV中识别的变量递归地传递给 XGBoost,通过xgboost选择和目标列最相关的特征,并组合它们,作为新的特征加入,不断迭代这个过程,直到生成所有有效特征。

📌 使用示例

简单的使用方法示例代码如下:

from featurewiz import FeatureWiz
features = FeatureWiz(corr_limit=0.70, feature_engg='', category_encoders='', dask_xgboost_flag=False, nrows=None, verbose=2)
X_train_selected = features.fit_transform(X_train, y_train)
X_test_selected = features.transform(X_test)
features.features  # 选出的特征列表 ## 自动化特征工程构建特征
import featurewiz as FW
outputs = FW.featurewiz(dataname=train, target=target, corr_limit=0.70, verbose=2, sep=',', header=0, test_data='',feature_engg='', category_encoders='',dask_xgboost_flag=False, nrows=None)

💡 PyCaret

📌 简介

📘PyCaret是 Python 中的一个开源、低代码机器学习库,可自动执行机器学习工作流。它是一个端到端的机器学习和模型管理工具,可加快实验周期并提高工作效率。

与本文中的其他框架不同,PyCaret 不是一个专用的自动化特征工程库,但它包含自动生成特征的功能。

📌 使用示例

# 安装
# pip install pycaret# 加载数据
from pycaret.datasets import get_data
insurance = get_data('insurance')# 初始化设置
from pycaret.regression import *
reg1 = setup(data = insurance, target = 'charges', feature_interaction = True, feature_ratio = True)

参考资料

  • 📘 机器学习实战 | 机器学习特征工程全面解读:https://www.showmeai.tech/article-detail/208
  • 📘 Featuretools:https://featuretools.alteryx.com/en/stable/
  • 📘 机器学习实战 | 自动化特征工程工具Featuretools应用:https://www.showmeai.tech/article-detail/209
  • 📘 官方快速入门:https://featuretools.alteryx.com/en/stable/
  • 📘 TSFresh:https://github.com/blue-yonder/tsfresh
  • 📘 Featurewiz:https://github.com/AutoViML/featurewiz
  • 📘 PyCaret:http://pycaret.org


http://chatgpt.dhexx.cn/article/uFe7j3kh.shtml

相关文章

数据的特征工程

数据的特征工程 1.特征工程是什么 特征工程是将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的模型准确性 2.特征工程的意义 更好的特征意味着更强的鲁棒性 更好的特征意味着只需用简单模型 更好的特征意味着更好的结果 3.…

机器学习中的特征建模(特征工程)和算法选型建模 - 以暴力破解识别为例

catalogue 1. 特征工程是什么?有什么作用? 2. 特征获取方案 - 如何获取这些特征? 3. 特征观察 - 运用各种统计工具、图标等工具帮助我们从直观和精确层面认识特征中的概率分布 4. 特征处理 - 特征清洗 5. 特征护理 - 特征预处理 6. 特征处理 …

机器学习之特征工程

机器学习之特征工程 转载自: 点击打开链接 在这个振奋人心的程序员节日里,我决定认真地写一篇文章来纪念一下自己这长达六年程序员史。o(╯□╰)o 本文是一篇关于特征工程的总结类文章,如有不足之处或理解有偏差的地方,还望多多指…

Python机器学习—特征工程

文章目录 1、数据集1.1 可用数据集1.2 scikit-learn数据集sklearn小数据集sklearn大数据集 1.3 数据集的划分数据集划分API 2.特征工程2.1特征工程包含内容 3.特征提取3.1字典特征提取3.2 文本特征提取3.3中文文本特征提取3.4 Tf-idf文本特征提取公式 4.特征预处理4.1 归一化4.…

特征工程全过程

文章目录 简介数据预处理 无量纲化 标准化区间缩放法标准化与归一化的区别对定量特征二值化对定性特征哑编码缺失值计算数据变换回顾特征选择 Filter 方差选择法相关系数法卡方检验互信息法Wrapper 递归特征消除法Embedded 基于惩罚项的特征选择法基于树模型的特征选择法总结降…

特征工程与自动特征工程

目录 1. 什么是特征工程 2. 什么是自动特征工程 2.1 自动方法有哪些 3. 文献说明 4、参考文献 1. 什么是特征工程 特征工程,是指用一系列工程化的方式从原始数据中提取出更好的数据特征,以提升模型的训练效果。特征工程是机器学习中不可或缺的一部…

特征工程常用方法

特征工程 ●特征(feature) :数据中抽取出来的对结果预测有用的信息。 ●特征的个数就是数据的观测维度 ●特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程, ●特征工程一般包括特征清…

特征工程——文本特征

目录 文本特征 1.expansion编码 2.consolidation编码 3.文本长度特征 4.标点符号特征 5.词汇属性特征 6.特殊词汇特征 7.词频特征 8.TF-IDF特征 9.LDA特征 注意: 1. 本系列所有的文章主要是梯度提升树模型展开的,抽取的特征主要为帮助梯度提升…

时间序列特征工程

关注微信公众号“时序人”获取更好的阅读体验 时间序列知识整理系列 时间序列统计分析时间序列聚类时间序列预测时间序列回归时间序列特征工程时间序列补缺时间序列异常检测 前几次的文章分享,我们了解了时间序列分析的基础方法以及预测方法。但在使用这些方法一般…

机器学习——特征工程——交互特征(多项式特征)

一、交互特征定义 两个特征的乘积可以组成一对简单的交互特征,这种相乘关系可以用逻辑操作符AND来类比,它可以表示出由一对条件形成的结果:“该购买行为来自于邮政编码为98121的地区”AND“用户年龄在18和35岁之间”。这种特征在基于决策树的…

特征工程到底是什么?

特征工程是一个过程,它首先在概念上,然后在程序上将一个原始样本转化为特征向量。它包括将一个特征概念化,然后编写程序代码,可能借助一些间接数据,将整个原始样本转化为一个特征。 4.1 为什么要进行特征工程 具体来…

什么是特征工程?如何进行特征工程?

1 特征工程是什么? 有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中…

特征工程

文章目录 一、特征工程概述二、特征选择1.什么是特征选择2.为什么要做特征选择3.特征选择的基本原则4.特征选择常用的四种方法4.1 方差选择法4.2 相关系数法4.3 递归特征消除法4.4 模型选择法 参考: 三、特征构造1.什么是好?2.常见做法3.两个变量组合而成…

机器学习——特征工程(3分钟的超详细介绍)

目录 1 什么是特征工程?2 数据预处理和特征处理2.1 数据预处理2.2 特征处理 3 特征降维3.0 什么是特征降维?3.1 特征选择3.2 线性降维3.2.1 主成分分析法(PCA)3.2.2 线性判别分析法(LDA) 1 什么是特征工程&…

机器学习之特征工程详解

特征工程是指使用专业的背景知识和技巧处理数据,使得特征能在机器学习算法上发生更好的作用的过程。更好的特征意味着更强的灵活性,只需简单模型就能得到更好的结果,因此,特征工程在机器学习中占有相当重要的地位,可以…

【特征工程】呕心之作——深度了解特征工程

【博客地址】:https://blog.csdn.net/sunyaowu315 【博客大纲地址】:https://blog.csdn.net/sunyaowu315/article/details/82905347 对数据分析、机器学习、数据科学、金融风控等感兴趣的小伙伴,需要数据集、代码、行业报告等各类学习资料&am…

python右键idel消失问题

由于先安装的是的python2.7,后来改用python3.4出现了idel不见的问题: cmd:regedit SystemFileAssociations 新建项: ‘.py’右侧键值不管,‘shell’,edit的键值均为‘Edit with IDLE’即可 将’command‘的键值设置…

分析及解决:虚拟机无法连接虚拟设备idel 0:1 问题

虚拟机无法连接虚拟设备 问题背景解决过程一次性永久解决方式 问题背景 在学习大数据集群开发的时候,按照要求需要配置多个使用Ubuntu操作系统的虚拟机组合集群:master,slave1,slave2。但在我按照要求配置好三个虚拟机后&#xf…

python的使用方法图解_python开发之IDEL(Python GUI)的使用方法图文详解

本文讲述了python开发之IDEL(Python GUI)的使用方法。分享给大家供大家参考,具体如下: 在安装完Python后,我们希望能够运用python GUI来运行一些我们编写的程序,那么Python GUI怎样用呢? 看完这篇blog,也…

python、idel、pycharm的安装使用

python的安装 Python 3的安装 idle的使用 Python安装的过程中默认自动安装了idle,idl是python自带的集成开发环境。 交互环境 如何启动idle 第一种,开始菜单所有应用点击idle 第二种,在搜索栏当中直接输入idle 集成开发环境PyCham…