FCN

article/2025/9/16 18:15:20

转载自: http://blog.csdn.net/taigw/article/details/51401448

在上述原文的基础上结合自己理解做出了部分修改。

从图像分类到图像分割

卷积神经网络(CNN)自2012年以来,在图像分类和图像检测等方面取得了巨大的成就和广泛的应用。

CNN的强大之处在于它的多层结构能自动学习特征,并且可以学习到多个层次的特征:较浅的卷积层感知域较小,学习到一些局部区域的特征;较深的卷积层具有较大的感知域,能够学习到更加抽象一些的特征。这些抽象特征对物体的大小、位置和方向等敏感性更低,从而有助于识别性能的提高。

这些抽象的特征对分类很有帮助,可以很好地判断出一幅图像中包含什么类别的物体,但是因为丢失了一些物体的细节,不能很好地给出物体的具体轮廓、指出每个像素具体属于哪个物体,因此做到精确的分割就很有难度。

传统的基于CNN的分割方法的做法通常是:为了对一个像素分类,使用该像素周围的一个图像块作为CNN的输入用于训练和预测。这种方法有几个缺点:一是存储开销很大。例如对每个像素使用的图像块的大小为15x15,则所需的存储空间为原来图像的225倍。二是计算效率低下。相邻的像素块基本上是重复的,针对每个像素块逐个计算卷积,这种计算也有很大程度上的重复。三是像素块大小的限制了感知区域的大小。通常像素块的大小比整幅图像的大小小很多,只能提取一些局部的特征,从而导致分类的性能受到限制。

针对这个问题, UC Berkeley的Jonathan Long等人提出了Fully Convolutional Networks (FCN) [1] 用于图像的分割。该网络试图从抽象的特征中恢复出每个像素所属的类别。即从图像级别的分类进一步延伸到像素级别的分类。

FCN的原理

FCN将传统CNN中的全连接层转化成一个个的卷积层。如下图所示,在传统的CNN结构中,前5层是卷积层,第6层和第7层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个类别的概率。FCN将这3层表示为卷积层,卷积核的大小(通道数,宽,高)分别为(4096,1,1)、(4096,1,1)、(1000,1,1)。所有的层都是卷积层,故称为全卷积网络。
这里写图片描述

可以发现,经过多次卷积(还有pooling)以后,得到的图像越来越小,分辨率越来越低(粗略的图像),那么FCN是如何得到图像中每一个像素的类别的呢?为了从这个分辨率低的粗略图像恢复到原图的分辨率,FCN使用了上采样。例如经过5次卷积(和pooling)以后,图像的分辨率依次缩小了2,4,8,16,32倍。对于最后一层的输出图像,需要进行32倍的上采样,以得到原图一样的大小。

这个上采样是通过反卷积(deconvolution)实现的。对第5层的输出(32倍放大)反卷积到原图大小,得到的结果还是不够精确,一些细节无法恢复。于是Jonathan将第4层的输出和第3层的输出也依次反卷积,分别需要16倍和8倍上采样,结果就精细一些了。下图是这个卷积和反卷积上采样的过程:
这里写图片描述

下图是32倍,16倍和8倍上采样得到的结果的对比,可以看到它们得到的结果越来越精确:
这里写图片描述

FCN的优点和不足

与传统用CNN进行图像分割的方法相比,FCN有两大明显的优点:一是可以接受任意大小的输入图像,而不用要求所有的训练图像和测试图像具有同样的尺寸。二是更加高效,因为避免了由于使用像素块而带来的重复存储和计算卷积的问题。

同时FCN的缺点也比较明显:一是得到的结果还是不够精细。进行8倍上采样虽然比32倍的效果好了很多,但是上采样的结果还是比较模糊和平滑,对图像中的细节不敏感。二是对各个像素进行分类,没有充分考虑像素与像素之间的关系,忽略了在通常的基于像素分类的分割方法中使用的空间规整(spatial regularization)步骤,缺乏空间一致性。

FCN的扩展

虽然FCN不够完美,但是其全新的思路开辟了一个新的图像分割方向,对这个领域的影响是十分巨大的,从2015年3月在arxiv和6月在CVPR会议上发表到写下这篇博客的时候一年的时间,该文章已被引用高达400次。

在FCN的基础上,UCLA DeepLab的Liang-Chieh Chen [2] 等在得到像素分类结果后使用了全连接的条件随机场(fully connected conditional random fields),考虑图像中的空间信息,得到更加精细并且具有空间一致性的结果。

Liang-Chieh的这篇文章有两大特点,一是忽略下采样过程,转而使用稀疏的卷积核以增加感知范围。如下图所示:
这里写图片描述

二是使用了Fully Connected CRF。CRF的能量函数中包括数据项和平滑项两部分,数据项与各个像素属于各类别的概率有关,平滑项控制像素与像素间类别的一致性。传统的CRF的平滑项只考虑相邻像素类别的关联性,而Fully Connected CRF将图像中任意两个像素之间的类别关联性都考虑进来。

下图是CNN与Fully Connected CRF结合的示意图。
这里写图片描述

实际上,CRF或者Fully Connected CRF是对CNN或者FCN输出的一种后处理技术。像素分类和空间规整这两步是分别进行的。Shuai Zheng [3] 等人将Fully Connected CRF表示成回流神经网络的结构(recurrent neuron network,RNN),将CNN与这个RNN放到一个统一的框架中,可以一步到位地对两者同时进行训练。将图像分割中的三个步骤:特征提取、分类器预测和空间规整全部自动化处理,通过学习获得,得到的结果比FCN-8s和DeepLab的方法的效果好了许多。如下图结果:
这里写图片描述

CNN、FCN与Fully Connected CRF的结合及统一的自动训练具有很不错的应用价值,已有很多的研究对这几篇文章进行跟进([2]和[3]的引用都已过百)。例如,帝国理工的Konstantinos Kamnitsas,Daniel Rueckert等人在这几篇文章的基础上,提出了三维的多尺度CNN和全连接CRF结合的方法,称为DeepMedic, 用于脑肿瘤的分割,最近(4月4号)刚发表于arXiv。

参考文献
1,Long, Jonathan, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic segmentation.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
2,Chen, Liang-Chieh, et al. “Semantic image segmentation with deep convolutional nets and fully connected crfs.” arXiv preprint arXiv:1412.7062 (2014).
3,Zheng, Shuai, et al. “Conditional random fields as recurrent neural networks.” Proceedings of the IEEE International Conference on Computer Vision. 2015.
4,Kamnitsas, Konstantinos, et al. “Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation.” arXiv preprint arXiv:1603.05959 (2016).


http://chatgpt.dhexx.cn/article/Jl109VXM.shtml

相关文章

FCN的理解

直观展现网络结构:http://ethereon.github.io/netscope/#/editor 卷积与逆卷积的动图https://github.com/vdumoulin/conv_arithmetic 【原文图】“Fully convolutional networks for semantic segmentation.” 上图中,32x即为扩大32倍。 Pool5扩…

FCN(全卷积网络)详解

FCN详解 全卷积网络就是在全连接网络的基础上,通过用卷积网络替换全连接网络得到的。 首先看一下什么是全连接网络,以及全连接网络的缺点。 通常的CNN网络中,在最后都会有几层全连接网络来融合特征信息,然后再对融合后的特征信…

FCN的学习及理解(Fully Convolutional Networks for Semantic Segmentation)

论文Fully Convolutional Networks for Semantic Segmentation 是图像分割的milestone论文。 理清一下我学习过程中关注的重点。 fcn开源代码 github下载地址https://github.com/shelhamer/fcn.berkeleyvision.org 核心思想 该论文包含了当下CNN的三个思潮 - 不含全连接层(…

FCN详解

FCN(fully convolution net) FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全连接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像(为什么?因为全连…

FCN(全卷积神经网络)详解

文章目录 1. 综述简介核心思想 2. FCN网络2.1 网络结构2.2 上采样 Upsampling2.3 跳级结构 3 FCN训练4. 其它4.1 FCN与CNN4.2 FCN的不足4.3 答疑 【参考】 1. 综述 简介 全卷积网络(Fully Convolutional Networks,FCN)是Jonathan Long等人于…

FCN网络解析

1 FCN网络介绍 FCN(Fully Convolutional Networks,全卷积网络) 用于图像语义分割,它是首个端对端的针对像素级预测的全卷积网络,自从该网络提出后,就成为语义分割的基本框架,后续算法基本都是在…

全卷积网络FCN详解

入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。 目录 一、FCN提出原因 二、FCN的网络结构分析 三、基本网络结构的源码分析(FCN-32s) 1、conv_relu函数—…

四、全卷积网络FCN详细讲解(超级详细哦)

四、全卷积网络FCN详细讲解(超级详细哦) 1、全卷积网络(FCN)的简单介绍1.1、CNN与FCN的比较 2、FCN上采样理论讲解2.1、双线性插值上采样2.2、反卷积上采样2.3、反池化上采样 2、 FCN具体实现过程3、 FCN模型实现过程3.1、模型训练…

什么是前端,后端???什么是后台???

序言: 相信很多刚刚接触web开发不久,或者是对于web开发没有一个粗略认知的朋友们,有时候会被这样的一个问题迷惑:什么是前端,后端???什么是后台??&#xff1f…

Web后台管理系统

开发语言:C# 数据库:sql2008 登录页面 后台管理首页 部分操作页面 后台管理系统,界面简洁,大方,操作简单,所有功能可定制开发。 后台管理系统制作 如果你对编程感兴趣或者想往编程方向发展,可…

后台交互-首页

目录 一、小程序首页动态加载数据数据库准备后台环境搭建实现小程序数据交互 二、通过wxs将首页动态数据优化 一、小程序首页动态加载数据 数据库准备 首先要准备数据库以及数据 在本机数据库创建oapro数据库,然后导入运行数据库文件 /*Navicat Premium Data Trans…

Web后台管理框架收集,后台模板

Web 开发中几乎的平台都需要一个后台管理,但是从零开发一套后台控制面板并不容易,幸运的是有很多开源免费的后台控制面板可以给开发者使用,以下是我整理的一些UI框架模板,可以拿来稍加改造就能直接使用 ,简单实用 1、s…

后台管理系统,前端框架

1:vue-element-admin 推荐指数:star:55k Github 地址:https://github.com/PanJiaChen/vue-element-admin Demo体验:https://panjiachen.github.io/vue-element-admin/#/dashboard 一个基于 vue2.0 和 Eelement 的控制面板 UI 框…

Web后台快速开发框架

Web后台快速开发框架 Coldairarrow 目录 目录 第1章 目录 1 第2章 简介 3 第3章 基础准备 4 3.1 开发环境要求 4 3.2 基础数据库构建 4 3.3 运行 5 第4章 详细教程 6 4.1 代码架构 6 4.1.1总体架构 6 4.1.2基础设施层 …

10个开源web后台管理系统(一)

Web 开发中几乎的平台都需要一个后台管理,但是从零开发一套后台控制面板并不容易,幸运的是有很多开源免费的后台控制面板可以给开发者使用 10个开源WEB后台管理系统(一) 1. vue-Element-Admin vue-element-admin 是一个后台前端…

10个开源web后台管理系统(二)

Web 开发中几乎的平台都需要一个后台管理,但是从零开发一套后台控制面板并不容易,幸运的是有很多开源免费的后台控制面板可以给开发者使用 10个开源WEB后台管理系统(二) 10个开源WEB后台管理系统(一) 6.…

js前台与后台数据交互-前台调后台

网站是围绕数据库来编程的,以数据库中的数据为中心,通过后台来操作这些数据,然后将数据传给前台来显示出来(当然可以将后台代码嵌入到前台)。即: 下面就讲前台与后台进行数据交互的方法,分前台调…

EMQX的Web管理后台-Dashboard

一、引言 当EMQX安装好虽然可以使用Linux命令操作,但是作为一个MQTT的服务器,还是需要一个Web管理后台方便查看数据和操作。因此,EMQX启动后会默认加载一个名为「Dashboard」的插件,用以提供的一个后端 Web 控制台,通过…

web 前后台数据交互的方式

做web开发,很重要的一个环节就是前后台的数据的交互,数据从页面提交到contoller层,数据从controler层传送到jsp页面来显示。这2个过程中数据具体是如何来传送的,是本节讲解的内容。 首先说一下数据如何从后台的contorller层传送到…

(Web前端)后台管理系统框架收集

一、(Web前端)常用的后台管理系统框架 1、使用vue-element-admin https://panjiachen.github.io/vue-element-admin-site/zh/guide/ 模板建议使用 vueAdmin-template , 桌面端 electron-vue-admin 1.包含功能 登录/注销 权限验证 侧边栏…