Python使用tsne进行高维数据可视化实战:二维可视化、三维可视化
# 绘制二维可视化图像并添加标签字符函数
def plot_embedding(data, label, title):x_min, x_max = np.min(data, 0), np.max(data, 0)data = (data - x_min) / (x_max - x_min)fig = plt.figure()ax = plt.subplot(111)for i in range(data.shape[0]):plt.text(data[i, 0], data[i, 1], str(label[i]),color=plt.cm.Set1(label[i]),fontdict={'weight': 'bold', 'size': 9})plt.xticks([])plt.yticks([])plt.title(title)return fig
# tsne降维计算
# tsne本质是流形学习(manifold learning)
from sklearn.preprocessing import StandardScaler,MinMaxScaler
scaler = StandardScaler()
scaler.fit(features)
result_scaled2 = scaler.transform(features)from skle