粒子群优化算法(PSO)python实践

article/2025/10/7 1:58:18

1 算法介绍和原理

1.1 算法原理

强烈推荐知乎大佬的这篇文章:粒子群优化算法(Particle Swarm Optimization, PSO)的详细解读 - 知乎 (zhihu.com)。该文章详细介绍了算法的原理、算法流程、参数解释和一些Tips,这里就不过多赘述了。

粒子群优化算法(PSO, Particle Swarm Optimization),属于启发式算法中的一种,常用于多目标优化,寻找全局最优解,具有收敛速度快、参数少、算法简单的优点。

算法流程图如下(图片来自这篇文章):

img

1.2 更新公式

1.2.1 速度更新公式

v i d k + 1 = ω v i d k + c 1 r 1 ( p i d , pbest  k − x i d k ) + c 2 r 2 ( p d , gbest  k − x i d k ) v_{i d}^{k+1}=\omega v_{i d}^k+c_1 r_1\left(p_{i d, \text { pbest }}^k-x_{i d}^k\right)+c_2 r_2\left(p_{d, \text { gbest }}^k-x_{i d}^k\right) vidk+1=ωvidk+c1r1(pid, pbest kxidk)+c2r2(pd, gbest kxidk)

v i d k + 1 v_{i d}^{k+1} vidk+1 —— 粒子 i i i 在第 k k k 次迭代中第 d d d 维的速度向量。

p i d , pbest  k p_{i d, \text { pbest }}^k pid, pbest k —— 粒子 i i i 在第 k k k 次迭代中第 d d d 维的历史最优位置。

速度可以看作一个向量,具有大小和方向。即是粒子下一轮迭代移动的距离和方向。公式分为三部分,第一部分为惯性项,由该粒子的当前速度和惯性权重 ω \omega ω 组成。第二部分为认知项,即是粒子当前位置和自身历史最优位置间的距离和方向。 第三部分为社会项,即是粒子当前位置和群体历史最优位置间的距离和方向。

对于更新速度的方向,等于三部分向量和向量的方向。

1.2.2 位置更新公式

x i d k + 1 = x i d k + v i d k + 1 x_{i d}^{k+1}=x_{i d}^{k}+v_{i d}^{k+1} xidk+1=xidk+vidk+1

点加向量等于点

大致掌握算法原理后,直接上手代码。

2 代码实现

示例问题:

求解如下函数的极小值
y = x 1 e x 2 + x 3 s i n x 2 + x 4 x 5 y=x_1e^{x_2}+x_3sinx_2+x_4x_5 y=x1ex2+x3sinx2+x4x5
每个变量的取值都在(1,25)。

首先是定义一个求解类及其初始化方法。

class PSO:def __init__(self, D, N, M, p_low, p_up, v_low, v_high, w = 1., c1 = 2., c2 = 2.):self.w = w  # 惯性权值self.c1 = c1  # 个体学习因子self.c2 = c2  # 群体学习因子self.D = D  # 粒子维度self.N = N  # 粒子群规模,初始化种群个数self.M = M  # 最大迭代次数self.p_range = [p_low, p_up]  # 粒子位置的约束范围self.v_range = [v_low, v_high]  # 粒子速度的约束范围self.x = np.zeros((self.N, self.D))  # 所有粒子的位置self.v = np.zeros((self.N, self.D))  # 所有粒子的速度self.p_best = np.zeros((self.N, self.D))  # 每个粒子的最优位置self.g_best = np.zeros((1, self.D))[0]  # 种群(全局)的最优位置self.p_bestFit = np.zeros(self.N)  # 每个粒子的最优适应值self.g_bestFit = float('Inf')  # float('-Inf'),始化种群(全局)的最优适应值,由于求极小值,故初始值给大,向下收敛,这里默认优化问题中只有一个全局最优解# 初始化所有个体和全局信息for i in range(self.N):for j in range(self.D):self.x[i][j] = random.uniform(self.p_range[0][j], self.p_range[1][j])self.v[i][j] = random.uniform(self.v_range[0], self.v_range[1])self.p_best[i] = self.x[i]  # 保存个体历史最优位置,初始默认第0代为最优fit = self.fitness(self.p_best[i])self.p_bestFit[i] = fit  # 保存个体历史最优适应值if fit < self.g_bestFit:  # 寻找并保存全局最优位置和适应值self.g_best = self.p_best[i]self.g_bestFit = fit

然后定义适应度计算函数,也就是我们要寻优的对象。

def fitness(x):"""根据粒子位置计算适应值,可根据问题情况自定义"""return x[0] * np.exp(x[1]) + x[2] * np.sin(x[1]) + x[3] * x[4]

定义每次迭代的更新函数。

def update(self):for i in range(self.N):# 更新速度(核心公式)self.v[i] = self.w * self.v[i] + self.c1 * random.uniform(0, 1) * (self.p_best[i] - self.x[i]) + self.c2 * random.uniform(0, 1) * (self.g_best - self.x[i])# 速度限制for j in range(self.D):if self.v[i][j] < self.v_range[0]:self.v[i][j] = self.v_range[0]if self.v[i][j] > self.v_range[1]:self.v[i][j] = self.v_range[1]# 更新位置self.x[i] = self.x[i] + self.v[i]# 位置限制for j in range(self.D):if self.x[i][j] < self.p_range[0][j]:self.x[i][j] = self.p_range[0][j]if self.x[i][j] > self.p_range[1][j]:self.x[i][j] = self.p_range[1][j]# 更新个体和全局历史最优位置及适应值_fit = self.fitness(self.x[i])if _fit < self.p_bestFit[i]:self.p_best[i] = self.x[i]self.p_bestFit[i] = _fitif _fit < self.g_bestFit:self.g_best = self.x[i]self.g_bestFit = _fit

其中主要完成每轮迭代中单个粒子位置和速度,历史最优位置和最优适应度的更新,以及群体(全局)的最优位置和最优适应度的更新。

最后,便是主要函数的实现。

def pso(self, draw = 1):best_fit = []  # 记录每轮迭代的最佳适应度,用于绘图w_range = Noneif isinstance(self.w, tuple):w_range = self.w[1] - self.w[0]self.w = self.w[1]time_start = time.time()  # 记录迭代寻优开始时间for i in range(self.M):self.update()  # 更新主要参数和信息if w_range:self.w -= w_range / self.M  # 惯性权重线性递减print("\rIter: {:d}/{:d} fitness: {:.4f} ".format(i, self.M, self.g_bestFit, end = '\n'))best_fit.append(self.g_bestFit.copy())time_end = time.time()  # 记录迭代寻优结束时间print(f'Algorithm takes {time_end - time_start} seconds')  # 打印算法总运行时间,单位为秒/sif draw:plt.figure()plt.plot([i for i in range(self.M)], best_fit)plt.xlabel("iter")plt.ylabel("fitness")plt.title("Iter process")plt.show()

测试代码如下。

if __name__ == '__main__':low = [1, 1, 1, 1, 1]up = [25, 25, 25, 25, 25]pso = PSO(5, 100, 50, low, up, -1, 1, w = 0.9)pso.pso()

测试结果如下图所示。

Figure_21

...
Iter: 47/50 fitness: 4.5598 
Iter: 48/50 fitness: 4.5598 
Iter: 49/50 fitness: 4.5598 
Algorithm takes 0.1444549560546875 seconds

可以看到在第30轮就已经完全收敛了,且函数在求解空间中的极小值为4.5598。

3 总结

  • 动态的惯性权重 [ 1 ] ^{[1]} [1]

    image-20221108142132141

    w_range = self.w[1] - self.w[0]
    self.w = self.w[1]
    self.w -= w_range / self.M  # 惯性权重线性递减
    
  • fitness变化逻辑

    fitness是适应度函数值,通常问题是寻找解空间内的粒子,使得该粒子所代表的解的fitness向下或向上收敛于某一定值。对于不同收敛方向,个体和全局最优fitness一般初始化赋值无穷大或者无穷小float('Inf')/float('-Inf')。并且在判断更新最优适应值时也应当注意大小于符号。

  • 程序复用

    对于上面的PSO类代码,不同多元寻优问题均可通过重写类中的fitness函数实现。或者定义self.fitness_function属性进行外部函数名传参赋值。

参考

[1] 粒子群优化算法(Particle Swarm Optimization, PSO)的详细解读 - 知乎 (zhihu.com)

[2] 粒子群算法(PSO)的Python实现(求解多元函数的极值)_Cyril_KI的博客-CSDN博客_pso算法python


http://chatgpt.dhexx.cn/article/DR54khOT.shtml

相关文章

粒子群优化算法python实现

文章目录 前言一、粒子群优化算法是什么&#xff1f;二、算法流程三、算法的python实现实验结果 前言 首先简单介绍粒子群优化算法&#xff0c;粒子群优化算法的python实现&#xff08;含代码&#xff09; 一、粒子群优化算法是什么&#xff1f; 粒子群优化算法(Particle Swa…

【优化算法】粒子群优化算法简介

这里是引用 文章目录 1. 简介2. 涌现复杂性3. 鸟群智能建模4. 代码实现5. Conclusion参考资料 1. 简介 人工智能是计算机科学的一个大领域&#xff0c;它模拟计算机中的智能行为。在此基础上&#xff0c;提出了一种基于元启发式&#xff08; metaheuristic&#xff09;的粒子群…

粒子群优化算法(Particle Swarm Optimization)

转自&#xff1a;https://www.cnblogs.com/21207-iHome/p/6062535.html 粒子群算法的思想源于对鸟/鱼群捕食行为的研究&#xff0c;模拟鸟集群飞行觅食的行为&#xff0c;鸟之间通过集体的协作使群体达到最优目的&#xff0c;是一种基于Swarm Intelligence的优化方法。它没有遗…

粒子群优化(PSO)算法

一.算法思想 粒子群算法( Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食…

智能优化算法——粒子群优化算法(PSO)(小白也能看懂)

前言&#xff1a; 本文主要参考B站的一篇学习视频后&#xff0c;加之自己的理解和浓缩精华&#xff0c;不想看文字的可以直接划到末尾去b站看原视频&#xff0c;非常通俗易懂。 理论知识&#xff1a; 感性认知&#xff1a;如下面一张图片所示。在一个范围内&#xff0c;以三…

智能算法系列之粒子群优化算法

本博客封面由ChatGPT DALLE 2共同创作而成。 文章目录 前言1. 算法思想2. 细节梳理2.1 超参数的选择2.2 一些trick 3. 算法实现3.1 问题场景3.2 python实现 代码仓库&#xff1a;IALib[GitHub] 前言 本篇是智能算法(Python复现)专栏的第三篇文章&#xff0c;主要介绍粒子群优化…

粒子群优化算法(PSO)

粒子群优化算法&#xff08;PSO&#xff09; 粒子群优化算法&#xff08;PSO&#xff09;是一种进化计算技术&#xff0c;源于对鸟群捕食行为的研究。该算法最初是受到飞鸟集群活动的规律性启发&#xff0c;进而利用群体智能建立的一个简化模型。粒子群算法在对动物及群活动行…

数学建模——粒子群优化算法(PSO)【有详细样例 + 工具:matlab】(万字总结)

文章目录 一、粒子群优化算法(PSO)是什么&#xff1f;二、粒子群优化算法有什么用&#xff1f;三、粒子群优化算法的适用范围&#xff1f;四、算法简介(有助于理解)五、算法流程第一步&#xff1a;初始化第二步&#xff1a;计算粒子的适应度第三步&#xff1a;更新个体极值与全…

粒子群优化算法(PSO)附代码

文章目录 1 算法介绍2 算法模型3 实现步骤4 MATLAB代码实现PSO算法4.1. main.m4.2. 运行结果 1 算法介绍 粒子群优化算法(Particle Swarm Optimization&#xff0c;PSO)是一种经典的群智能算法&#xff0c;该算法灵感源自于鸟类飞行和觅食的社会活动&#xff0c;鸟群通过个体之…

浏览器添加划词翻译插件

网站&#xff1a;https://github.com/Selection-Translator/crx-selection-translate 安装下载的扩展程序

Chrome划词翻译-Saladict

Saladict 沙拉查词是一款专业划词翻译扩展&#xff0c;为交叉阅读而生。大量权威词典涵盖中英日韩法德西语&#xff0c;支持复杂的 划词操作、网页翻译、生词本、PDF&#xff0c;以及 Vimium 全键盘操作 。 迄今为止最好用的网页划词翻译插件。 下载安装地址&#xff1a;Chrome…

谷歌划词翻译

谷歌划词翻译是个谷歌插件 复制及时翻译很好用 插件下载地址 配置谷歌翻译方法

惊了,MATLAB竟能制作如此方便的划词翻译工具???

我点开程序一看&#xff0c;程序第一行就写着import&#xff0c; 却歪歪斜斜的每行上都是着MATLAB几个大字。 我横竖睡不着&#xff0c;仔细看了半夜&#xff0c; 才从字缝里看出字来&#xff0c;满页都写着 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀——Java 其实用的…

python实现划词翻译

最近因为编程&#xff0c;需要大量地看一些说明文档&#xff0c;无奈说明文档都是英文的&#xff0c;可把我这个半桶水折腾死了&#xff0c;太多词汇不知道&#xff0c;一个个复制翻译太麻烦了。于是我根据自己的需要&#xff0c;用python写了一个划词翻译。 一&#xff1a;使…

划词翻译简单实现

环境&#xff1a;archlinux &#xff0c;其余linux系统类似 安装依赖 sudo pacman -S xsel sudo pacman -S translate-shell sudo pacman -S libnotify脚本书写 创建脚本 touch word_translate.sh chmod x word_translate.sh vim word_tranlate.sh#!/bin/bashwhile true; d…

Chrome划词插件-有道词典

当我们在阅读文章&#xff0c;查找资料或者查看英文文献时&#xff0c;经常会遇到不认识的英文单词&#xff0c;这时&#xff0c;我们往往会复制单词百度一下才行。 其实&#xff0c;遇到这种情况&#xff0c;我们可以直接下载一个有道词典的Chrome划词插件&#xff0c;遇到需…

PDF划词翻译插件

PDF划词翻译插件 1、打开一个拓展插件的下载网站2、下载沙拉查词并安装3、进入详情&#xff0c;设置为允许打开文件网址4、固定她5、打开她的设置最终划词结果 1、打开一个拓展插件的下载网站 点击此网站地址 2、下载沙拉查词并安装 打开开发者模式&#xff0c;把下载好的.cr…

福昕pdf阅读器的划词翻译功能如何添加(图文并茂)

一、打开福昕阅读器 二、可在上方工具栏&#xff0c;点击“帮助”&#xff0c;关于福昕阅读器领鲜版查看安装的版本信息&#xff0c;如图1-1&#xff0c;图1-2 图1-1 图1-2 三、找到上方工具栏的图标按键&#xff0c;名为“自定义快速访问工具栏”&#xff0c;如图1-3&#…

谷歌浏览器无法翻译成中文,谷歌翻译,最新(沉浸式翻译和划词翻译,chrome无法翻译,谷歌浏览器无法翻译此网页)

简介&#xff1a;谷歌浏览器自带的翻译功能&#xff0c;对我们来说用处很大&#xff0c;但有的时候突然就会变成“无法翻译此网页”&#xff0c;之前给大家提供过两种无法翻译此网页的解决方案&#xff0c;这次再给大家分享下两款别的翻译方法&#xff1b; 一、上次介绍&#x…

关于网页划词翻译

2013-4-21 近日偶然看到js页面文字选中后分享到新浪微博实现&#xff0c;发现原来竟然只要一句话就可以实现获取划词。便萌生自己写个划词翻译的东东&#xff0c;方便自己看文档。 我首先想到了之前看到的油猴插件&#xff0c;最早是在看优酷去广告插件的原理时知道这个东西。感…