粒子群优化算法(Particle Swarm Optimization)

article/2025/10/7 1:58:18

转自:https://www.cnblogs.com/21207-iHome/p/6062535.html

粒子群算法的思想源于对鸟/鱼群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。粒子群算法与其他现代优化方法相比的一个明显特色就是所需要调整的参数很少、简单易行,收敛速度快,已成为现代优化方法领域研究的热点。
在这里插入图片描述

粒子群算法的基本思想

设想这样一个场景:一群鸟在随机搜索食物。已知在这块区域里只有一块食物;所有的鸟都不知道食物在哪里;但它们能感受到当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?

  1. 搜寻目前离食物最近的鸟的周围区域

  2. 根据自己飞行的经验判断食物的所在。

PSO正是从这种模型中得到了启发,PSO的基础是信息的社会共享

算法介绍

每个寻优的问题解都被想像成一只鸟,称为“粒子”。所有粒子都在一个D维空间进行搜索。

所有的粒子都由一个fitness function 确定适应值以判断目前的位置好坏。

每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。

每一个粒子还有一个速度以决定飞行的距离和方向。这个速度根据它本身的飞行经验以及同伴的飞行经验进行动态调整。
在这里插入图片描述
在这里插入图片描述
粒子速度更新公式包含三部分: 第一部分为“惯性部分”,即对粒子先前速度的记忆;第二部分为“自我认知”部分,可理解为粒子i当前位置与自己最好位置之间的距离;第三部分为“社会经验”部分,表示粒子间的信息共享与合作,可理解为粒子i当前位置与群体最好位置之间的距离。

粒子群算法流程

第1步 在初始化范围内,对粒子群进行随机初始化,包括随机位置和速度

第2步 计算每个粒子的适应值

第3步 更新粒子个体的历史最优位置

第4步 更新粒子群体的历史最优位置

第5步 更新粒子的速度和位置

第6步 若未达到终止条件,则转第2步

粒子群算法流程图如下:
  在这里插入图片描述

计算示例

以Ras函数(Rastrigin’s Function)为目标函数,求其在x1,x2∈[-5,5]上的最小值。这个函数对模拟退火、进化计算等算法具有很强的欺骗性,因为它有非常多的局部最小值点和局部最大值点,很容易使算法陷入局部最优,而不能得到全局最优解。如下图所示,该函数只在(0,0)处存在全局最小值0。
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')import numpy as np
import matplotlib.pyplot as plt# 目标函数定义
def ras(x):y = 20 + x[0]**2 + x[1]**2 - 10*(np.cos(2*np.pi*x[0])+np.cos(2*np.pi*x[1]))return y# 参数初始化
w = 1.0
c1 = 1.49445
c2 = 1.49445maxgen = 200   # 进化次数  
sizepop = 20   # 种群规模# 粒子速度和位置的范围
Vmax =  1
Vmin = -1
popmax =  5
popmin = -5# 产生初始粒子和速度
pop = 5 * np.random.uniform(-1,1,(2,sizepop))
v = np.random.uniform(-1,1,(2,sizepop))fitness = ras(pop)             # 计算适应度
i = np.argmin(fitness)      # 找最好的个体
gbest = pop                    # 记录个体最优位置
zbest = pop[:,i]              # 记录群体最优位置
fitnessgbest = fitness        # 个体最佳适应度值
fitnesszbest = fitness[i]      # 全局最佳适应度值# 迭代寻优
t = 0
record = np.zeros(maxgen)
while t < maxgen:# 速度更新v = w * v + c1 * np.random.random() * (gbest - pop) + c2 * np.random.random() * (zbest.reshape(2,1) - pop)v[v > Vmax] = Vmax     # 限制速度v[v < Vmin] = Vmin# 位置更新pop = pop + 0.5 * v;pop[pop > popmax] = popmax  # 限制位置pop[pop < popmin] = popmin'''# 自适应变异p = np.random.random()             # 随机生成一个0~1内的数if p > 0.8:                          # 如果这个数落在变异概率区间内,则进行变异处理k = np.random.randint(0,2)     # 在[0,2)之间随机选一个整数pop[:,k] = np.random.random()  # 在选定的位置进行变异 '''# 计算适应度值fitness = ras(pop)# 个体最优位置更新index = fitness < fitnessgbestfitnessgbest[index] = fitness[index]gbest[:,index] = pop[:,index]# 群体最优更新j = np.argmin(fitness)if fitness[j] < fitnesszbest:zbest = pop[:,j]fitnesszbest = fitness[j]record[t] = fitnesszbest # 记录群体最优位置的变化   t = t + 1# 结果分析
print zbestplt.plot(record,'b-')
plt.xlabel('generation')  
plt.ylabel('fitness')  
plt.title('fitness curve')  
plt.show()

参数选择与优化

参数w,c1,c2的选择分别关系粒子速度的3个部分:惯性部分、社会部分和自身部分在搜索中的作用。如何选择、优化和调整参数,使得算法既能避免早熟又能比较快的收敛,对工程实践有着重要意义。

1.惯性权重w描述粒子上一代速度对当前代速度的影响。w值较大,全局寻优能力强,局部寻优能力弱;反之,则局部寻优能力强。当问题空间较大时,为了在搜索速度和搜索精度之间达到平衡,通常做法是使算法在前期有较高的全局搜索能力以得到合适的种子,而在后期有较高的局部搜索能力以提高收敛精度。所以w不宜为一个固定的常数。
在这里插入图片描述
wmax最大惯性权重,wmin最小惯性权重,run当前迭代次数,runmax为算法迭代总次数。较大的w有较好的全局收敛能力,较小的w则有较强的局部收敛能力。因此,随着迭代次数的增加,惯性权重w应不断减少,从而使得粒子群算法在初期具有较强的全局收敛能力,而晚期具有较强的局部收敛能力。

2.学习因子c2=0称为自我认识型粒子群算法,即“只有自我,没有社会”,完全没有信息的社会共享,导致算法收敛速度缓慢;学习因子c1=0称为无私型粒子群算法,即“只有社会,没有自我”,会迅速丧失群体多样性,容易陷入局部最优解而无法跳出;c1,c2都不为0,称为完全型粒子群算法,完全型粒子群算法更容易保持收敛速度和搜索效果的均衡,是较好的选择。

3.群体大小m是一个整数,m很小时陷入局部最优解的可能性很大;m很大时PSO的优化能力很好,但是当群体数目增长至一定水平时,再增长将不再有显著作用,而且数目越大计算量也越大。群体规模m 一般取20~40,对较难或特定类别的问题 可以取到100~200。

4.粒子群的最大速度Vmax对维护算法的探索能力与开发能力的平衡很重要,Vmax较大时,探索能力强,但粒子容易飞过最优解;Vmax较小时,开发能力强,但是容易陷入局部最优解。Vmax一般设为每维变量变化范围的10%-20%


http://chatgpt.dhexx.cn/article/qsiN4Ctf.shtml

相关文章

粒子群优化(PSO)算法

一.算法思想 粒子群算法( Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食…

智能优化算法——粒子群优化算法(PSO)(小白也能看懂)

前言&#xff1a; 本文主要参考B站的一篇学习视频后&#xff0c;加之自己的理解和浓缩精华&#xff0c;不想看文字的可以直接划到末尾去b站看原视频&#xff0c;非常通俗易懂。 理论知识&#xff1a; 感性认知&#xff1a;如下面一张图片所示。在一个范围内&#xff0c;以三…

智能算法系列之粒子群优化算法

本博客封面由ChatGPT DALLE 2共同创作而成。 文章目录 前言1. 算法思想2. 细节梳理2.1 超参数的选择2.2 一些trick 3. 算法实现3.1 问题场景3.2 python实现 代码仓库&#xff1a;IALib[GitHub] 前言 本篇是智能算法(Python复现)专栏的第三篇文章&#xff0c;主要介绍粒子群优化…

粒子群优化算法(PSO)

粒子群优化算法&#xff08;PSO&#xff09; 粒子群优化算法&#xff08;PSO&#xff09;是一种进化计算技术&#xff0c;源于对鸟群捕食行为的研究。该算法最初是受到飞鸟集群活动的规律性启发&#xff0c;进而利用群体智能建立的一个简化模型。粒子群算法在对动物及群活动行…

数学建模——粒子群优化算法(PSO)【有详细样例 + 工具:matlab】(万字总结)

文章目录 一、粒子群优化算法(PSO)是什么&#xff1f;二、粒子群优化算法有什么用&#xff1f;三、粒子群优化算法的适用范围&#xff1f;四、算法简介(有助于理解)五、算法流程第一步&#xff1a;初始化第二步&#xff1a;计算粒子的适应度第三步&#xff1a;更新个体极值与全…

粒子群优化算法(PSO)附代码

文章目录 1 算法介绍2 算法模型3 实现步骤4 MATLAB代码实现PSO算法4.1. main.m4.2. 运行结果 1 算法介绍 粒子群优化算法(Particle Swarm Optimization&#xff0c;PSO)是一种经典的群智能算法&#xff0c;该算法灵感源自于鸟类飞行和觅食的社会活动&#xff0c;鸟群通过个体之…

浏览器添加划词翻译插件

网站&#xff1a;https://github.com/Selection-Translator/crx-selection-translate 安装下载的扩展程序

Chrome划词翻译-Saladict

Saladict 沙拉查词是一款专业划词翻译扩展&#xff0c;为交叉阅读而生。大量权威词典涵盖中英日韩法德西语&#xff0c;支持复杂的 划词操作、网页翻译、生词本、PDF&#xff0c;以及 Vimium 全键盘操作 。 迄今为止最好用的网页划词翻译插件。 下载安装地址&#xff1a;Chrome…

谷歌划词翻译

谷歌划词翻译是个谷歌插件 复制及时翻译很好用 插件下载地址 配置谷歌翻译方法

惊了,MATLAB竟能制作如此方便的划词翻译工具???

我点开程序一看&#xff0c;程序第一行就写着import&#xff0c; 却歪歪斜斜的每行上都是着MATLAB几个大字。 我横竖睡不着&#xff0c;仔细看了半夜&#xff0c; 才从字缝里看出字来&#xff0c;满页都写着 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀——Java 其实用的…

python实现划词翻译

最近因为编程&#xff0c;需要大量地看一些说明文档&#xff0c;无奈说明文档都是英文的&#xff0c;可把我这个半桶水折腾死了&#xff0c;太多词汇不知道&#xff0c;一个个复制翻译太麻烦了。于是我根据自己的需要&#xff0c;用python写了一个划词翻译。 一&#xff1a;使…

划词翻译简单实现

环境&#xff1a;archlinux &#xff0c;其余linux系统类似 安装依赖 sudo pacman -S xsel sudo pacman -S translate-shell sudo pacman -S libnotify脚本书写 创建脚本 touch word_translate.sh chmod x word_translate.sh vim word_tranlate.sh#!/bin/bashwhile true; d…

Chrome划词插件-有道词典

当我们在阅读文章&#xff0c;查找资料或者查看英文文献时&#xff0c;经常会遇到不认识的英文单词&#xff0c;这时&#xff0c;我们往往会复制单词百度一下才行。 其实&#xff0c;遇到这种情况&#xff0c;我们可以直接下载一个有道词典的Chrome划词插件&#xff0c;遇到需…

PDF划词翻译插件

PDF划词翻译插件 1、打开一个拓展插件的下载网站2、下载沙拉查词并安装3、进入详情&#xff0c;设置为允许打开文件网址4、固定她5、打开她的设置最终划词结果 1、打开一个拓展插件的下载网站 点击此网站地址 2、下载沙拉查词并安装 打开开发者模式&#xff0c;把下载好的.cr…

福昕pdf阅读器的划词翻译功能如何添加(图文并茂)

一、打开福昕阅读器 二、可在上方工具栏&#xff0c;点击“帮助”&#xff0c;关于福昕阅读器领鲜版查看安装的版本信息&#xff0c;如图1-1&#xff0c;图1-2 图1-1 图1-2 三、找到上方工具栏的图标按键&#xff0c;名为“自定义快速访问工具栏”&#xff0c;如图1-3&#…

谷歌浏览器无法翻译成中文,谷歌翻译,最新(沉浸式翻译和划词翻译,chrome无法翻译,谷歌浏览器无法翻译此网页)

简介&#xff1a;谷歌浏览器自带的翻译功能&#xff0c;对我们来说用处很大&#xff0c;但有的时候突然就会变成“无法翻译此网页”&#xff0c;之前给大家提供过两种无法翻译此网页的解决方案&#xff0c;这次再给大家分享下两款别的翻译方法&#xff1b; 一、上次介绍&#x…

关于网页划词翻译

2013-4-21 近日偶然看到js页面文字选中后分享到新浪微博实现&#xff0c;发现原来竟然只要一句话就可以实现获取划词。便萌生自己写个划词翻译的东东&#xff0c;方便自己看文档。 我首先想到了之前看到的油猴插件&#xff0c;最早是在看优酷去广告插件的原理时知道这个东西。感…

基于Edge浏览器的沙拉划词插件使用教程(好用的翻译插件)

1.使用目的 - 使用沙拉划词实现网页多种翻译源进行实时翻译。 - 使用沙拉划词实现PDF翻译。 2.安装方法 2.1 打开edge扩展 点击工具栏右侧… 然后点击扩展 进入扩展 2.2 下载沙拉划词 2.2.1 点击获取扩展 2.2.2点击搜索 搜索沙拉划词 回车搜索 正常获取并添加扩展 出现沙…

PDF划词翻译软件

PDF划词翻译 一个简单的PDF划词翻译软件。 Github仓库地址&#xff1a;https://github.com/WCX1024979076/simple_pdf_translator Github下载地址&#xff1a; https://github.com/WCX1024979076/simple_pdf_translator/releases/tag/v0.1.0 Gitee仓库地址&#xff1a; htt…

推荐一个谷歌浏览器插件:划词翻译

地址&#xff1a;划词翻译插件 最近在看一些英文文档&#xff0c;遇到了一些词汇不认识&#xff0c;在谷歌浏览器上找到了这个翻译插件 谷歌浏览器自己有一个全文翻译的功能&#xff0c;对于一些技术类文档&#xff0c;有些词如果翻译错误了就会闹出笑话来&#xff0c;限于对…