详解遗传算法(含MATLAB代码)

article/2025/11/6 21:35:27

目录

一、遗传算法概述

二、遗传算法的特点和应用

三、遗传算法的基本流程及实现技术

3.1 遗传算法的基本流程

3.2 遗传算法的实现技术

1.编码

2.适应度函数

3.选择算子

4.交叉算子

5.变异算子

6.运行参数

四、遗传算法的基本原理

4.1 模式定理

4.2 积木块假设

五、遗传算法编程实例(MATLAB)


一、遗传算法概述

        遗传算法(Genetic Algorithm,GA)是进化计算的一部分,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法简单、通用,鲁棒性强,适于并行处理。

二、遗传算法的特点和应用

   遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,具有以下特点:

1. 以决策变量的编码作为运算对象。

    传统的优化算法往往直接利用决策变量的实际值本身来进行优化计算,但遗传算法是使用决策变量的某种形式的编码作为运算对象。这种对决策变量的编码处理方式,使得我们在优化计算中可借鉴生物学中染色体和基因等概念,可以模仿自然界中生物的遗传和进化激励,也可以很方便地应用遗传操作算子。

2. 直接以适应度作为搜索信息。

    传统的优化算法不仅需要利用目标函数值,而且搜索过程往往受目标函数的连续性约束,有可能还需要满足“目标函数的导数必须存在”的要求以确定搜索方向。

    遗传算法仅使用由目标函数值变换来的适应度函数值就可确定进一步的搜索范围,无需目标函数的导数值等其他辅助信息。直接利用目标函数值或个体适应度值也可以将搜索范围集中到适应度较高部分的搜索空间中,从而提高搜索效率。

3. 使用多个点的搜索信息,具有隐含并行性

    传统的优化算法往往是从解空间的一个初始点开始最优解的迭代搜索过程。单个点所提供的搜索信息不多,所以搜索效率不高,还有可能陷入局部最优解而停滞;

    遗传算法从由很多个体组成的初始种群开始最优解的搜索过程,而不是从单个个体开始搜索。对初始群体进行的、选择、交叉、变异等运算,产生出新一代群体,其中包括了许多群体信息。这些信息可以避免搜索一些不必要的点,从而避免陷入局部最优,逐步逼近全局最优解。

4. 使用概率搜索而非确定性规则。

   传统的优化算法往往使用确定性的搜索方法,一个搜索点到另一个搜索点的转移有确定的转移方向和转移关系,这种确定性可能使得搜索达不到最优店,限制了算法的应用范围。

   遗传算法是一种自适应搜索技术,其选择、交叉、变异等运算都是以一种概率方式进行的,增加了搜索过程的灵活性,而且能以较大概率收敛于最优解,具有较好的全局优化求解能力。但,交叉概率、变异概率等参数也会影响算法的搜索结果和搜索效率,所以如何选择遗传算法的参数在其应用中是一个比较重要的问题

综上,由于遗传算法的整体搜索策略和优化搜索方式在计算时不依赖于梯度信息或其他辅助知识,只需要求解影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架。它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于各种领域,包括:

  • 函数优化
  • 组合优化生产调度问题
  • 自动控制
  • 机器人学
  • 图像处理(图像恢复、图像边缘特征提取......)
  • 人工生命
  • 遗传编程
  • 机器学习

三、遗传算法的基本流程及实现技术

   基本遗传算法(Simple Genetic Algorithms,SGA)只使用选择算子、交叉算子和变异算子这三种遗传算子,进化过程简单,是其他遗传算法的基础。

3.1 遗传算法的基本流程

  1.  通过随机方式产生若干由确定长度(长度与待求解问题的精度有关)编码的初始群体;
  2. 通过适应度函数对每个个体进行评价,选择适应度值高的个体参与遗传操作,适应度低的个体被淘汰;
  3. 经遗传操作(复制、交叉、变异)的个体集合形成新一代种群,直到满足停止准则(进化代数GEN>=?);
  4. 将后代中变现最好的个体作为遗传算法的执行结果。

                                                   

其中,GEN是当前代数;M是种群规模,i代表种群数量。

3.2 遗传算法的实现技术

基本遗传算法(SGA)由编码、适应度函数、遗传算子(选择、交叉、变异)及运行参数组成。

1.编码

(1)二进制编码

二进制编码的字符串长度与问题所求解的精度有关。需要保证所求解空间内的每一个个体都可以被编码。

优点:编、解码操作简单,遗传、交叉便于实现

缺点:长度大

(2)其他编码方法

格雷码、浮点数编码、符号编码、多参数编码等

2.适应度函数

适应度函数要有效反映每一个染色体与问题的最优解染色体之间的差距。

3.选择算子

通过选择算子模拟“优胜劣汰”,适应度高的个体被遗传到下一代的概率较大,适应度低的算子被遗传到下一代的概率较小。

常用的选择算法:轮盘赌选择法,即令\sum f_i表示群体的适应度函数值的总和,f_i表示群体中第i个染色体的适应度值,则它产生后代的能力刚好为其适应度值所占的份额\frac{f_i}{\sum f_i}

4.交叉算子

  • 交叉运算是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体;
  • 交叉运算是遗传算法区别于其他进化算法的重要特征,是产生新个体的主要方法。

在交叉之前需要将群体中的个体进行配对,一般采取随机配对原则。

常用的交叉方式:

  • 单点交叉
  • 双点交叉(多点交叉,交叉点数越多,个体的结构被破坏的可能性越大,一般不采用多点交叉的方式)
  • 均匀交叉
  • 算术交叉

5.变异算子

遗传算法中的变异运算是指将个体染色体编码串中的某些基因座上的基因值用该基因座的其他等位基因来替换,从而形成一个新的个体。

就遗传算法运算过程中产生新个体的能力方面来说,交叉运算是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异运算只是产生新个体的辅助方法,但也是必不可少的一个运算步骤,它决定了遗传算法的局部搜索能力。交叉算子与变异算子的共同配合完成了其对搜索空间的全局搜索和局部搜索,从而使遗传算法能以良好的搜索性能完成最优化问题的寻优过程。

6.运行参数

  • 编码长度。编码长度取决于问题解的精度,精度越高,编码越长;
  • 种群规模。规模小,收敛快但降低了种群的多样性,N=20-200
  • 交叉概率。较大的交叉概率容易破坏种群中已形成的优良结构,使搜索具有太大随机性;较小的交叉概率发现新个体的速度太慢,一般取值为P_c=0.4-0.99
  • 变异概率。变异概率太小,则变异操作产生新个体的能力和抑制早熟现象的能力会较差;变异概率过高随机性过大,一般建议取值范围为0.005~0.01
  • 终止进化代数。算法运行结束的条件之一,一般取100~1000

四、遗传算法的基本原理

4.1 模式定理

定义1:模式H是由{0,1,*}中的元素组成的一个编码串,其中“*”表示通配符,既能被当作0,也能被当作1。e.g. H=10**1

定义2:模式的阶,是指模式中所含有0,1的数量,记作O(H)  e.g. O(11*00**)=4

定义3:模式的矩,即模式的长度,是指模式中从左到右第一个非*位和最后一个非*位之间的距离,记作\delta (H)

          e.g. \delta (01**1)=3;\delta (**0*1)=2;\delta (***1**)=1

定义4:模式的适应度值,是群体中所包含的全部个体的适应度值的平均值。

定义5:在选择、交叉、变异遗传算子的作用下,低阶、长度短、超过群体平均适应值的模式的生存数量,将随迭代次数以指数规律增长。

模式定理不仅说明基因块的样本呈指数增长,也说明用遗传算法寻求最优样本的可能性,但它并未指出遗传算法一定能够寻求到最优解,积木块假设说明了遗传算法的寻找最优解的能力。

4.2 积木块假设

具有低阶、定义长度短,且适应度值高于群体平均适应度值的模式称为基因块或积木块。

积木块假设:个体的基因块通过选择、交叉、变异等遗传算子的作用,能够相互拼接在一起,形成适应度更高的个体编码串。

积木块假设说明了用遗传算法求解各类问题的基本思想,即通过积木块直接相互拼接在一起能够产生更好的解。

五、遗传算法编程实例(MATLAB)

https://github.com/strawberry-magic-pocket/Genetic-Algorithm.git

 


http://chatgpt.dhexx.cn/article/Ce1uif7I.shtml

相关文章

遗传算法步骤

遗传算法是一种模拟生物自然进化的一种算法,通话对生物进化的模拟,实现对数值函数的模拟计算。它主要分为四个步骤:初始化、杂交、变异和选择。相关实现可参考https://github.com/ShaquallLee/evolutionary-programming/tree/master/aEP 1、…

遗传算法原理+程序案例详解

注明:这篇遗传算法程序我在网上看到多次,很多人在转载时,都称已经修改了错误的地方,程序在matlab上能够运行。 当我在学习这段程序时,发现结果仍存在很大问题(不稳定、不准确)。我一行一行看时,发现不仅有少…

遗传算法、遗传算法库函数ga和gamultiobj、遗传算法工具箱GOT实例介绍

目录 前言 适应度函数和目标函数的关系 1. 常规遗传算法 2.结合非线性规划fmincon函数的遗传算法 2.1 fmincon非线性规划函数使用 2.2 结合非线性规划fmincon函数的遗传算法使用及示例 2.2.1 编码 2.2.2 选择 2.2.3交叉 2.2.4变异 2.2.5非线性规划fmincon函数 2.2.…

遗传算法原理与应用详解

遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。 一.进化论知识 作为遗传算法生物背景的介绍&#xff0…

遗传算法(一) 遗传算法的基本原理

遗传算法(一)遗传算法的基本原理 1.概述 遗传算法(Genetic Algorithm, GA)起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗…

算法理解-遗传算法(Genetic Algorithm)(一个带计算过程的例子)

想要快速的了解一个算法,最好的方式便是拿个例子手动进行实现算一遍。这里借鉴了网络上的一个例子,求解如下的一个函数: f(x)x∗sin(10∗π∗x)2x∈[−1,2] f(x) = x*sin(10*\pi*x)+2 \\ x \in[-1, 2] 其函数图像为: 例子来源&a…

遗传算法及python实现

目录 一、遗传算法概念 二、遗传算法应用实例 基础概念: 1、种群和个体: 2、编码、解码与染色体: 3、适应度和选择: 4、 交叉、变异: 三、遗传算法python完整代码 “适者生存,不适者淘汰” …

遗传算法详解python代码实现以及实例分析

遗传算法 文章目录 遗传算法前言一、遗传算法是什么?二、实例讲解例题11.初始化种群2.优胜劣汰3.根据优胜劣汰的结果,交配生殖、变异5.生物遗传进化 例题21.初始化参数2.定义环境(定义目标函数)3.DNA解码(计算x&#x…

遗传算法实例解析

遗传算法实例及MATLAB程序解析 遗传算法Genetic Algorithms,GA)是一种基于自然选择原理和自然遗传机制的搜索(寻优)算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。遗传算法的实质是…

遗传算法详解及代码实现

遗传算法 定义相关术语交叉变异产生子代完整过程 遗传算法应用问题的提出与解决方案“袋鼠跳”问题爬山法(最速上升爬山法)模拟退火遗传算法 遗传算法实现过程遗传算法的一般步骤遗传算法图解进化细节种群和个体编码方法二进制编码浮点编码法符号编码法 …

遗传算法详解

转载:https://blog.csdn.net/u010451580/article/details/51178225 三:遗传算法 照例先给出科学定义: 遗传算法(Genetic Algorithm, GA)起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起…

遗传算法(Genetic Algorithm)详解与实现

遗传算法(Genetic Algorithm)详解与实现 遗传算法简介类比达尔文进化论达尔文进化理论遗传算法对应概念 遗传算法理论图式定理(schema theorem) 遗传算法与传统算法的差异遗传算法的优缺点优点局限性 遗传算法应用场景遗传算法的组…

经典遗传算法及MATLAB实例

经典遗传算法及简单实例(MATLAB) 1. 遗传算法简单介绍1.1 理论基础1.2 算法要点1.1 编码1.2 适应度函数 1.3 基本流程 2. 代码实例(MATLAB)2.1 代码汇总2.1 初始化种群2.2 计算适应度2.3 迭代终止判断2.4 自然选择(轮盘…

遗传算法及实例

遗传算法是模拟生物在自然环境下遗传的过程而形成的自适应全局优化搜索算法。如果把某个问题的可行域看作是一个族群,目标函数看作是自然选择的条件,那么,这个族群通过一代又一代的繁衍和进化最终变成最接近筛选条件的样子。遗传算法就是利用…

遗传算法原理及算法实例

遗传算法原理解析 遗传算法(GA)是一种元启发式自然选择的过程,属于进化算法(EA)大类。遗传算法通常是利用生物启发算子,如变异、交叉和选择来生成高质量的优化和搜索问题的解决方案。 借鉴生物进化理论&…

遗传算法小结及算法实例(附Matlab代码)

目录 1、遗传算法流程 2、关键参数说明 (1)群体规模 \(NP\) (2)交叉概率 \(P_c\) (3)变异概率 \(P_m\) (4)进化代数 \(G\) 3、MATLAB仿真实例 3.1 遗传算法求解一元函数的极…

遗传算法(Genetic Algorithm,GA)实例详解

遗传算法是模拟生物在自然环境中的遗传和进化的过程而形成的自适应全局优化搜索算法,他能有效求解NP问题以及非线性、多峰函数优化和多目标优化问题。 1.理论基础 1.1生物学基础 遗传算法的生物学基础是借鉴了达尔文的进化论和孟德尔的遗传学说,一个种…

遗传算法设计实例

1.遗传算法实例程序设计 随机初始化种群P(t){x1,x2…xn),计算P(t)中个体的适应值。其MATLAB程序的基本格式如下: Begin t0 初始化P(t) 计算P(t)的适应值; while (不满足停止准则)dobegintt1从P(t1)中选择P(t)重组P(t)计算P(t)的适应值 end例1 求函数 f(x) 9*sin(5x) cos(4x)…

遗传算法GA原理详解及实例应用 附Python代码

遗传算法GA 遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。 生物在自然界中的生存繁衍,显示了其对自然环境的优异的自适…

vue实现点击下载exe,运行报错shellexecuteex失败 代码2

页面效果 exe插件放在vue项目的public文件夹里&#xff0c;然后用a标签实现点击下载 <a href"/VideoWebPlugin.exe">下载插件</a> 成功下载后运行报错 解决方法&#xff1a;选择在文件夹中显示&#xff0c;右击属性&#xff0c;在兼容性设置里的以管理员…