p 型极大似然估计 matlab,最大似然估计的matlab实现

article/2025/9/16 19:45:47

41528d3028836879cd698677c3999917.gif最大似然估计的matlab实现

最大似然估计的matlab实现 实验目的: 在MVU估计量不存在或存在但不能求解的情况下,最大似然估计是获得实用估计的最通用的方法,利用它可简便地实现对复杂的估计问题的求解。对绝大多数实用的最大似然估计,当观测数据足够多时,其性能是最优的。本实验旨在通过网格搜索法和Newton-Raphson迭代法实现对未知信号的最大似然估计,并观察估计性能随样本数据量和信噪比的变化,加深对最大似然估计的理解。 实验原理: 对于一个达不到CRLB的估计问题,不存在一个有效的估计量,不能实现利用充分估计量求解MVU估计的办法。利用基于最大似然原理的估计量,即最大似然估计量(MLE),可以求得非常接近于MVU估计量的估计量。其近似的本质在于,对于足够多的数据记录,MLE具有渐近有效性。、 设信号x的PDF已知,为。当存在两个估计量和,且,显然会更倾向于选取为估计量,即。 似然函数表征参数给定条件下输入x的概率密度,当时使达到最大,表明使此输入x的出现概率最大。现在观测到的输入x,可判断为由使它最可能出现的那个引起的。 因此,最大似然估计的优点是无需知道参量的先验知识,同时代价函数也不必给定,对未知先验概率的变量估计适用。 实验内容: 问题: 设观测数据集为 其中是方差为的WGN,N、已知,试通过网格搜索法和Newton-Raphson迭代法求出频率的MLE,并分析估计性能随N、SNR的变化。 分析: 是方差为的WGN,有x[n]的PDF为 使得上式取得最大值时的即为所求估计量。对求导,得 当取得最大值时,最大。 方案: 网格搜索法 从上式可以看出的值只与第二项有关,有 在的变化范围0~0.5内,使得最大的值即为所求估计量。运用网格搜索法,以0.01的间隔递增,分别代入。 Newton-Raphson迭代法 迭代方法通过求导函数的零值而使对数似然函数最大,即 使用迭代方法求解此方程,令 假设有一个求解上式的初始猜测值,称为f1,,如果g(f)在f1附近是近似线性的,能近似表示为 令g(f)=0,求解对应的f2,利用f2作为新的猜测值,对函数g再次线性化,并重复上述方法求得新的零值。最终这个猜测值序列将收敛到g(f)的真零值。 Newton-Raphson迭代法是根据前一个猜测值,求出一个新的猜测值,即 当时,可认为迭代结束,得到估计量


http://chatgpt.dhexx.cn/article/COpEg91X.shtml

相关文章

正态分布的极大似然估计

1. 正态分布的极大似然估计 笔记来源:Maximum Likelihood For the Normal Distribution, step-by-step!!! 1.1 正态分布的参数对其形状的影响 1.1.1 μ值对正态分布的影响 1.1.2 σ值对正态分布的影响 1.2 极大似然估计 极大似然估计提供了一种给定观察数据来评…

极大似然估计和最大似然估计定义

最近看朴素贝叶斯法,发现有关于极大似然估计部分,网上找了好久,感觉也都说不清。然后还有个最大似然估计,最要命的是我发现还有人专门对两者区别做了论述。然后我就看了下英文定义: 最大似然估计(maximum likelihood …

最大似然估计程序c语言,极大似然估计(示例代码)

版权声明:本文为博主原创文章https://极大似然估计 ?0?2 ?0?2 ?0?2 ?0?2 以前多次接触过极大似然估计,最近在看贝叶斯分类,总结如下: 贝叶斯决策 ?0?2 ?0?2 ?0?2 ?0?2 首先来看贝叶斯分类 ?0?2 ?0?2 ?0?2 ?0?2 其中:p(w):为先验概率,表示在某种…

理解极大似然估计

目录 1 前言2 似然估计的直觉(intuition)3 似然举例4 总结5 参考文献 1 前言 最大似然估计也可以称为极大似然估计,在机器学习(深度学习)中经常用来求解模型的参数。所以理解什么是最大似然估计,对机器学习…

极大似然估计

概念 极大似然估计(Maximum likelihood estimation, 简称MLE)是统计学中常用的参数估计方法,极大似然估计的关键就是,利用已知的样本结果信息,反推最大概率导致这些样本结果出现的模型参数值。 也就是首先假定其具有某种确定的概率分布&…

《概率论》:最大似然估计 和 求法

2021.09.21主要参考小崔老师:https://www.bilibili.com/video/BV1Hb4y1m7rE《概率论》:最大似然估计 和 求法 视频地址:https://www.bilibili.com/video/BV1KL4y187jV/ 1. 最大似然估计思路 从样本情况推测自然界概率模型,到底自…

最大似然估计详解

一、引入 极大似然估计,我们也把它叫做最大似然估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。   在我们正式讲解极…

最大似然估计(ML)

1. 说明 最大似然估计(Maximum Likelihood Estimation, ML)是一种在给定观察数据情况下,来评估模型参数的算法。它属于一种统计方法,用来求一个样本集的相关概率密度函数的参数。   例如:   统计全校人口的身高,我们已知身高…

最大似然估计

最大似然估计 最大似然估计是在总体的分布类型己知的前提下使用的一种参数估计法。在自然生活中,观察到的某种现象产生的原因可能有很多种.但要判断出到底是哪种原因时,人们往往选择可能性最大的一种或者说是概率最大的,这就是最大似然估计的…

键盘键值一览表

参考下图自己找一下对应的键值

php根据键值排序,数组根据某个键值排序

数组根据某个键值排序 时间 :2018-8-8 评论: [ 0 ] 条 浏览: [ 346 ] 次 function arraySort($array,$keys,$sortasc) { $newArr $valArr array(); foreach ($array as $key>$value) { $valArr[$key] $value[$keys]; } ($sort asc) ? asort($valArr) : ar…

ES6-键值对

1.什么是键值对 键值对(key value) 顾名思义,每一个键会对应一个值。 2.举例 a:身份证号和你本人是绑定的关系。每一个身份证号(键)都会对应一个人(值)。 b:我们在登录微信或者游戏时,需要输入手机号验证身份。系统会向该手机号发送一条验证短信。 这里的手机号码(键…

Map键值对模式

map中的每个元素属于键值对模式 。如果往map中添加元素时,需要添加key value,map也属于一个接口,该接口常见的实现类是HashMap 1.创建对象 Map map new HashMap();------ 默认是初始化的大小是16 负载因子是0.5 2.添加操作 (1&#x…

键值型数据库

键值型数据库通过 Key-Value 键值的方式来存储数据,其中 Key 和 Value 可以是简单的对象,也可以是复杂的对象。Key 作为唯一的标识符,优点是查找速度快,在这方面明显优于关系型数据库,缺点是无法像关系型数据库一样使用…

键值数据库的基本架构

目录 1、可以存储哪些数据? 2、可以对数据做什么操作?如何存储? 3、采用什么样的访问方式? 4、如何定位键值对的位置? 5、不同操作的具体逻辑是怎样的? 6、如何实现重启后快速提供服务? …

python获取键盘按键键值_python获取键值

广告关闭 腾讯云11.11云上盛惠 ,精选热门产品助力上云,云服务器首年88元起,买的越多返的越多,最高返5000元! 更新 python sdk通过 pip 命令您可以方便获取到最新的 xml python sdk:pip uninstall qcloud_cos_v4 pip install -u cos-python-sdk-v5此外,您也可以参考 py…

键值数据库初探

一. 几个概念 1. 关联数组:和普通数组一样的结构,区别在于没有普通数组一样的约束或者说规范 (1)key(下标)不限于整数,可以是字符串 (2)value可以是实数、字符串、列表…

键盘键值表

键盘键值表 值 描述 0x1 鼠标左键 0x2 鼠标右键 0x3 CANCEL 键 0x4 鼠标中键 0x8 BACKSPACE 键 0x9 TAB 键 0xC CLEAR 键 0xD ENTER 键 0x10 SHIFT 键 0x11 CTRL 键 0x12 MENU 键 0x13 PAUSE 键 0x14 CAPS LOCK 键 0x1B ESC 键 0x20 SPACEBAR 键 0x21 PAGE UP 键 0x22 PAGE DOW…

sklearn机器学习:岭回归Ridge

在sklearn中,岭回归由线性模型库中的Ridge类来调用: Ridge类的格式 sklearn.linear_model.Ridge (alpha1.0, fit_interceptTrue, normalizeFalse, copy_XTrue, max_iterNone, tol0.001, solver’auto’, random_stateNone) 和线性回归相比,…