极大似然估计

article/2025/9/16 19:50:05

概念

极大似然估计(Maximum likelihood estimation, 简称MLE)是统计学中常用的参数估计方法,极大似然估计的关键就是,利用已知的样本结果信息,反推最大概率导致这些样本结果出现的模型参数值。

也就是首先假定其具有某种确定的概率分布,但是其参数未知,然后基于训练样本对概率分布的参数进行估计。

其中,极大似然估计中的经典方法,就是根据数据采样去估计概率分布的参数,而采样需要满足一个重要的假设,就是所有的采样都是独立同分布的。

对于似然函数 p ( x ∣ θ ) p(x|\theta) p(xθ),它描述对于不同的概率模型的参数,出现x这个样本点的概率,其中x表示样本点数据, θ \theta θ表示样本假设的概率模型的参数。

而极大似然估计要做的就是,基于对样本采样估计使得似然函数的值最大时的模型参数 θ \theta θ.

例子

例如:给定一组样本x1,x2,…,xn,假设他们服从高斯分布 N ( u , σ ) N(u,\sigma) N(u,σ),利用最大似然估计参数 u , σ u,\sigma u,σ
解:
首先根据高斯分布的概率密度函数作为样本Xi的概率估计
在这里插入图片描述
对参数 u , σ u,\sigma u,σ进行极大似然估计,L(x)为似然函数,直观上看即为试图在 u , σ u,\sigma u,σ的所有取值中,找到一个能使这组数据出现的可能性最大的值。

进一步地,为了避免连乘操作造成下溢,使用对数似然并化简得到
在这里插入图片描述
此时的目标函数可以写成如下 l ( x ) l(x) l(x)函数,由于求 l ( x ) l(x) l(x)函数的最大值时 u , σ u,\sigma u,σ的取值,即 u , σ u,\sigma u,σ导数等于0时的值即为所求,最终的解如下:
在这里插入图片描述
在求多元函数极值时有,各偏导等于零点的点为临界点。求二次导确定是否为极大值点。
例如:f(x, y)的一个临界点是(x0, y0),即fx(x0, y0) = 0 && fy(x0, y0) = 0,f的二阶导数是fxx,fxy,fyy满足
在这里插入图片描述

根据计算得到的结果可知,通过极大似然估计法得到的正态分布的均值就是样本均值,方差就是样本的伪方差(分母为n)。这显然是一个符合直觉的结果。

需要注意的是,这种参数化的方法虽然能够使概率估计变得相对简单,但是估计的结果的准确性严重依赖于所假设的概率分布形式是否符合潜在的真实数据分布。在现实应用中,欲做出能较好地接近潜在真实分布的假设,往往需在一定程度上利用应用任务本身的经验知识,否则若仅凭猜测来假设概率分布形式,很可能产生误导性的结果。

参考:
https://zhuanlan.zhihu.com/p/26614750
https://blog.csdn.net/u011508640/article/details/72815981
西瓜书149页


http://chatgpt.dhexx.cn/article/nFFPd3Iy.shtml

相关文章

《概率论》:最大似然估计 和 求法

2021.09.21主要参考小崔老师:https://www.bilibili.com/video/BV1Hb4y1m7rE《概率论》:最大似然估计 和 求法 视频地址:https://www.bilibili.com/video/BV1KL4y187jV/ 1. 最大似然估计思路 从样本情况推测自然界概率模型,到底自…

最大似然估计详解

一、引入 极大似然估计,我们也把它叫做最大似然估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。   在我们正式讲解极…

最大似然估计(ML)

1. 说明 最大似然估计(Maximum Likelihood Estimation, ML)是一种在给定观察数据情况下,来评估模型参数的算法。它属于一种统计方法,用来求一个样本集的相关概率密度函数的参数。   例如:   统计全校人口的身高,我们已知身高…

最大似然估计

最大似然估计 最大似然估计是在总体的分布类型己知的前提下使用的一种参数估计法。在自然生活中,观察到的某种现象产生的原因可能有很多种.但要判断出到底是哪种原因时,人们往往选择可能性最大的一种或者说是概率最大的,这就是最大似然估计的…

键盘键值一览表

参考下图自己找一下对应的键值

php根据键值排序,数组根据某个键值排序

数组根据某个键值排序 时间 :2018-8-8 评论: [ 0 ] 条 浏览: [ 346 ] 次 function arraySort($array,$keys,$sortasc) { $newArr $valArr array(); foreach ($array as $key>$value) { $valArr[$key] $value[$keys]; } ($sort asc) ? asort($valArr) : ar…

ES6-键值对

1.什么是键值对 键值对(key value) 顾名思义,每一个键会对应一个值。 2.举例 a:身份证号和你本人是绑定的关系。每一个身份证号(键)都会对应一个人(值)。 b:我们在登录微信或者游戏时,需要输入手机号验证身份。系统会向该手机号发送一条验证短信。 这里的手机号码(键…

Map键值对模式

map中的每个元素属于键值对模式 。如果往map中添加元素时,需要添加key value,map也属于一个接口,该接口常见的实现类是HashMap 1.创建对象 Map map new HashMap();------ 默认是初始化的大小是16 负载因子是0.5 2.添加操作 (1&#x…

键值型数据库

键值型数据库通过 Key-Value 键值的方式来存储数据,其中 Key 和 Value 可以是简单的对象,也可以是复杂的对象。Key 作为唯一的标识符,优点是查找速度快,在这方面明显优于关系型数据库,缺点是无法像关系型数据库一样使用…

键值数据库的基本架构

目录 1、可以存储哪些数据? 2、可以对数据做什么操作?如何存储? 3、采用什么样的访问方式? 4、如何定位键值对的位置? 5、不同操作的具体逻辑是怎样的? 6、如何实现重启后快速提供服务? …

python获取键盘按键键值_python获取键值

广告关闭 腾讯云11.11云上盛惠 ,精选热门产品助力上云,云服务器首年88元起,买的越多返的越多,最高返5000元! 更新 python sdk通过 pip 命令您可以方便获取到最新的 xml python sdk:pip uninstall qcloud_cos_v4 pip install -u cos-python-sdk-v5此外,您也可以参考 py…

键值数据库初探

一. 几个概念 1. 关联数组:和普通数组一样的结构,区别在于没有普通数组一样的约束或者说规范 (1)key(下标)不限于整数,可以是字符串 (2)value可以是实数、字符串、列表…

键盘键值表

键盘键值表 值 描述 0x1 鼠标左键 0x2 鼠标右键 0x3 CANCEL 键 0x4 鼠标中键 0x8 BACKSPACE 键 0x9 TAB 键 0xC CLEAR 键 0xD ENTER 键 0x10 SHIFT 键 0x11 CTRL 键 0x12 MENU 键 0x13 PAUSE 键 0x14 CAPS LOCK 键 0x1B ESC 键 0x20 SPACEBAR 键 0x21 PAGE UP 键 0x22 PAGE DOW…

sklearn机器学习:岭回归Ridge

在sklearn中,岭回归由线性模型库中的Ridge类来调用: Ridge类的格式 sklearn.linear_model.Ridge (alpha1.0, fit_interceptTrue, normalizeFalse, copy_XTrue, max_iterNone, tol0.001, solver’auto’, random_stateNone) 和线性回归相比,…

Python 中 Ridge 和 Lasso 回归的教程

作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 线性回归和逻辑回归是回归技术中最受欢迎的技术,但是他们一般很难处理大规模数据问题,很难处理过拟合问题。所以,我们一般都会加上一些正则化技…

多元线性回归改进RidgeLasso

多元线性回归改进 – 潘登同学的Machine Learning笔记 文章目录 多元线性回归改进 -- 潘登同学的Machine Learning笔记(简单回顾)多元线性回归模型归一化normalization归一化的方法来个小例子试一试? 正则化regularization正则项 Lasso回归 和 Ridge岭回归L1稀疏L2平…

岭回归(Ridge)不同alpha值对归回结果的影响

对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为“病态矩阵”。有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态。对于高斯消去法来说,如果主元(即对角线上的…

r ridge回归_手把手带你画高大上的lasso回归模型图

各位芝士好友,今天我们来聊一聊lasso回归算法。与预后有关的文章,传统的做法一般会选择多变量cox回归,高级做法自然就是我们今天的lasso分析。 首先我们先来几篇文献,看一下lasso最近发的两篇文章,如下: 这…

机器学习算法系列(四)- 岭回归算法(Ridge Regression Algorithm)

阅读本文需要的背景知识点:标准线性回归算法、一丢丢编程知识 一、引言 前面一节我们学习了机器学习算法系列(三)- 标准线性回归算法(Standard Linear Regression Algorithm),最后求得标准线性回归的代价函…