[计算机毕业设计]模糊聚类算法

article/2025/10/1 18:05:46

前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

本次分享的课题是

🎯模糊聚类算法

课题背景与意义

聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。
 聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。
 聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。

课题实现技术思路

1 聚类算法的分类
 目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
 主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。
 每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。
 目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶 属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如著名的FCM算法等。
 本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
2 四种常用聚类算法研究
2.1 k-means聚类算法

 k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
 k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地 选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。 这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:
 
 这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:
输入:包含n个对象的数据库和簇的数目k;
输出:k个簇,使平方误差准则最小。
步骤:
  (1) 任意选择k个对象作为初始的簇中心;
  (2) repeat;
  (3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
  (4) 更新簇的平均值,即计算每个簇中对象的平均值;
  (5) until不再发生变化。
2.2 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下:

这里给出采用最小距离的凝聚层次聚类算法流程:
 (1) 将每个对象看作一类,计算两两之间的最小距离;
 (2) 将距离最小的两个类合并成一个新类;
 (3) 重新计算新类与所有类之间的距离;
 (4) 重复(2)、(3),直到所有类最后合并成一类。
2.3 SOM聚类算法
 SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
 SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。 学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
 算法流程:
 (1) 网络初始化,对输出层每个节点权重赋初值;
 (2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
 (3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
 (4) 提供新样本、进行训练;
 (5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
2.4 FCM聚类算法
 1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
  FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。

算法流程:
 (1) 标准化数据矩阵;
 (2) 建立模糊相似矩阵,初始化隶属矩阵;
 (3) 算法开始迭代,直到目标函数收敛到极小值;
 (4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
3 四种聚类算法试验
3.1 试验数据

 实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS[13]数据集,IRIS数据集包含150个样本数据,分别取自三种不同 的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。 在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。
3.2 试验结果说明
 文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。

 如表1所示,对于四种聚类算法,按三方面进行比较:(1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;(2)运行时间:即聚类整个 过程所耗费的时间,单位为s;(3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为 第i类中的精度,则平均精度为:

3.3 试验结果分析
四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初 始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然 不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优 解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。
聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。

🚀海浪学长的作品示例:

大数据算法项目

机器视觉算法项目

 

微信小程序项目

Unity3D游戏项目

最后💯

🏆为帮助大家节省时间,如果对开题选题,或者相关的技术有不理解,不知道毕设如何下手,都可以随时来问学长,我将根据你的具体情况,提供帮助。


http://chatgpt.dhexx.cn/article/8tQKDZ5N.shtml

相关文章

51nod-1548:欧姆诺姆和糖果

1548 欧姆诺姆和糖果 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 一天,欧姆诺诺姆来到了朋友家里,他发现了许多糖果。有蓝色和红色两种。他知道每颗…

android自动导入包快捷键,Android studio 自动导入(全部)包 import

http://blog.csdn.net/buaaroid/article/details/44979629 1 Android studio 只有import单个包的快捷键:Alt+Enter。没有Eclipse下的快速导入包的快捷键Ctrl+Shift+O。 2 但Android studio设置里有一项Auto Import自动导入功能。设置过程如下: Android studio --> File--&…

舍友打一把游戏的时间,我实现了一个selenium自动化测试并把数据保存到MySQL

文章目录 前言最终效果开发环境selenium元素定位方法页面分析思路分析实现步骤运行结果以下是全部代码 前言 很久没有玩selenium自动化测试了,近日在学习中都是在忙于学习新的知识点,所以呢今天就来写个selenium自动化测试的案例吧。有没有人疑惑&#…

51nod P1381 硬币游戏【数学】

题目 思路 比较简单. 参考代码 #include<iostream> #include<cstdio> using namespace std; int T,n; int main() {scanf("%d",&T);while(T--){scanf("%d",&n);printf("%d\n",2*n);}return 0; }

51nod3061 车

题目 题目链接 解题思路 提一种不需要生成树的解法。 我们将询问挂到点上&#xff0c;使用启发式合并的并查集。当询问的两边合并到一起时&#xff0c;我们就得到了答案。 整体复杂度 O ( n l o g 2 n ) O(nlog_2n) O(nlog2​n)。 代码 #include <cstdio> #include &…

51nod 1279 扔盘子

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1279 题目: 有一口井,井的高度为N,每隔1个单位它的宽度有变化。现在从井口往下面扔圆盘,如果圆盘的宽度大于井在某个高度的宽度,则圆盘被卡住(恰好等于的话会下去)。 盘子有几种命运:1、掉到…

51nod 1352:集合计数

1352 集合计数 基准时间限制&#xff1a;1 秒 空间限制&#xff1a;131072 KB 分值: 20 难度&#xff1a;3级算法题 收藏 关注 给出N个固定集合{1&#xff0c;N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足&#xff1a;第一个元素是A的倍数且第二个元素是B的倍数…

51nod 1266 蚂蚁

题目链接&#xff1a;https://www.51nod.com/onlineJudge/questionCode.html#!problemId1266 题目&#xff1a; n只蚂蚁以每秒1cm的速度在长为Lcm的竿子上爬行。当蚂蚁爬到竿子的端点时就会掉落。由于竿子太细&#xff0c;两只蚂蚁相遇时&#xff0c;它们不能交错通过&#xff…

51nod3155 跳房子

3155 跳房子 小华正在和她的小伙伴玩跳房子游戏。这是一个加强版的跳房子&#xff0c;每一行的格子数量可能超过 2 个。 这个游戏需要在地面上画了n排格子&#xff0c;其中第i排包含a[i]个格子。&#xff08;保证两端的这两排仅有一个格子&#xff09; 之后规定两端的这两个格…

Pycharm中用Appium框架编写第一个自动化脚本

一.环境依赖 Node.js appium python jdk Android SDK Appium-Python-Client Appium-doctor 二.环境搭建 提醒&#xff1a;安装路径如果要自定义的话尽量不要出现中文&#xff0c;不然很容易出现各种报错&#xff01; cmd尽量用管理员身份运行 1.Node.js 下载地址&am…

软件行为(五)之数据存储

笔者愚见&#xff1a;数据的存储方式是软件行为中的重中之重。 存储数据大约有4个地方&#xff1a;寄存器、高速缓存、内存及硬盘等。其中cpu对数据的访问速度也是依次降低&#xff0c;如下图 上图从上到下也是cpu访问数据的顺序&#xff0c;CPU的数据去寄存区去拿&#xff0c…

探究业界云存储平台(1):开源的软件定义存储—CoprHD

在接下来的两章中&#xff0c;我将分别为大家介绍与分析三款软件定义存储解决方案&#xff1a;CoprHD、Ceph与ScaleIO&#xff0c;并对后两者进行性能比较分析。 一、开源的软件定义存储—CoprHD 了解开源的CoprHD&#xff08;CoprHD&#xff09;&#xff0c;需要先了解EMC V…

软件定义存储2.0,谁领风骚?

关注我们牛年牛气冲天 中国的软件定义存储&#xff08;SDS&#xff09;市场就像是早上八九点钟的太阳&#xff0c;那样耀眼&#xff0c;生机勃勃&#xff0c;富有朝气。IDC的报告显示&#xff0c;2020年全年&#xff0c;中国SDS市场规模同比增长51.7%&#xff0c;相比2019年&am…

软件定义存储

在一个生成的数据和数据种类都空前大量的时代&#xff0c;软件定义的存储赋予了企业有效应对此爆炸式增长的途径。 当然&#xff0c;随着营销机器在过去几年的大肆渲染&#xff0c;我们越来越难以了解软件定义的存储的确切含义。因此&#xff0c;为了更好地了解软件定义的存储可…

软件定义存储的逆袭

近日&#xff0c;IDC《2017年第二季度中国软件定义存储及超融合市场跟踪报告》的发布在国内软件定义存储&#xff08;SDS&#xff09;和超融合&#xff08;HCI&#xff09;市场激起涟漪。去年还隐身于“Others”的一众厂商中&#xff0c;今年却一跃成为SDS市场前三&#xff0c;…

SDS软件定义存储

计算机发展到今天&#xff0c;软件定义已经是一种潮流&#xff0c;前有软件定义网络&#xff0c;后有软件定义存储。 对于软件定义存储来说&#xff0c;是随着当年EMC在EMC World上发布的软件定义存储战略迅速成为业界热点的。软件定义存储将硬件存储资源整合起来&#xff0c;…

基于对象的软件定义存储——联想 NetApp DXL系列对象存储方案

联想 DXL 系列对象存储 基于NetApp StorageGRID 技术的联想DXL系列对象存储是一款基于对象的软件定义的存储&#xff0c;它支持 Amazon Simple Storage Service (S3) API 等行业标准对象 API。您可以利用它在全球范围内的 16 个数据中心之间构建一个单一名称空间&#xff0c;并…

软件定义的存储时代即将结束

数据存储、安全性、保护和整体管理对于大多数组织的生存至关重要。 从软件定义的存储时代的结束到本地存储的回归&#xff0c;Nyriad的首席营收官概述了他对最新技术趋势的看法&#xff0c;并提供了他对2023年将会发生的预测。 从以CPU为中心的软件定义存储过渡到卸载辅助架构…

【存储】软件定义存储,看这一篇就够了!

原文&#xff1a;https://www.sohu.com/a/397070625_505795 1.SDS科普 SDS(Software Defined Storage)即软件定义存储&#xff0c;简单地说就是将存储硬件和软件进行分离&#xff0c;采用标准化硬件作为载体(如X86架构)&#xff0c;基于软件实现企业级存储功能和服务。相对于传…

软件定义存储的特征及如何工作

软件定义存储的特征 1 可扩展性 软件定义存储可从传统三节点扩展为数千节点&#xff0c;随着存储设备数量的逐渐递增&#xff0c;软件定义存储内部吞吐量也会不断增加&#xff0c;各项存储性能呈现出线性扩展性能&#xff0c;确保信息可允许群集中的应用控制及访问。 2 弹性…