突发!大连理工大学研三学生自杀,遗书曝光,研究生的压力应该谁来化解?...

article/2025/9/15 23:34:11

点击上方“码农突围”,马上关注

这里是码农充电第一站,回复“666”,获取一份专属大礼包

真爱,请设置“星标”或点个“在看”

来源:科研干货

10月13日,微博上一个名为“红烧土豆叶”的网友引起广大网友关注,他在微博上讲述了自己读研期间经历过的迷茫与无奈,并最终决定自杀......

(视频:腾讯视频)

原微博:

(图源:微博:红烧土豆叶)

接下来是网友评论:

(图源:微博)

不知道这位同学怎么样了,是不是已经重拾信心再战科研、向论文发起冲击,还是已经化身成一只猫慵懒自在的重头来过,我私心希望是前者......

研究生压力大自杀的事屡见不鲜,没经历过的人永远不知道科研有多难搞,论文有多难写,导师有多难应付,可你不是已经坚持到现在了吗,一下?我们搞出点成果来,哪怕就为了对得起自己三年的努力!

科研虽难,可总归能想到解决办法的,小编由衷的希望所有的研究生小伙伴们能够珍惜自己的生命,世界总是美好的!

最近有有不少老铁在后台留言说,想进大厂,但是算法不好。最近我整理了一份刷题实录,这份刷题实录,也让我进了心仪的大厂。现在开放分享给大家。希望对大家有所帮助。
任何的算法题,如同写作文一样,都有一些模板可以套用的。比如面试常考的DP(动态规划),难的是一些关键点是否能想清楚。比如你能写出动态转移方程,这题基本上就可以AC了。整个刷题实录内容,包括 双子针、动态规划、二分查找、贪心算法、深度优先搜索、字符串、递归、字典树、排序、链表等相关专题内容。图文并茂,附有刷题答案源码。
刷题任务的题目,是根据题目的类型来汇总的,总结了八个类别,每个类别下面也总结了5个左右的题型,帮助大家分门别类的突破,所以刷起来相对会更有重点和针对性。如果从头到尾的刷,每周按顺序刷42题,很容易让自己坚持不下来,也会觉得很枯燥。所以在制定计划的时候可以让这个计划变得更“有趣"和针对性,让它看起来更容易实现一点,才会更容易坚持。
目前上述内容已打包成完整电子书,具体获取方式如下:扫描关注 Github爱好者社区 公众号;在 Github爱好者社区 公众号后台回复关键词「9999」获取下载地址。扫描关注,回复"9999"即可下载
最近热文•  :: 是什么语法?•  中国首位!28岁任教授,刷新多项纪录被封“鬼才”,如今再获国际大奖!•  随便写的一个 API 竟获得 2.5 亿的访问量...•  再见,JSP!!!???? 长按二维码 2 秒
在公众号后台回复「Java」
获取最新整理的Java学习资料明天见(。・ω・。)

http://chatgpt.dhexx.cn/article/5nbNdnbR.shtml

相关文章

英雄算法学习路线

文章目录 零、自我介绍一、关于拜师二、关于编程语言三、算法学习路线1、算法集训1)九日集训2)每月算法集训 2、算法专栏3、算法总包 四、英雄算法联盟1、英雄算法联盟是什么?2、如何加入英雄算法联盟?3、为何会有英雄算法联盟&am…

算法如何学习?别想太多,两个字

文章目录 前言一、语言基础1、「 光天化日学C语言 」 二、刷题必读1、「 LeetCode零基础指南 」2、「 九日集训每日打卡 」 三、语言入门1、「 C语言入门100例 」 四、算法入门1、「 算法零基础100讲 」 五、算法进阶1、「 画解数据结构 」2、「 LeetCode算法题集汇总 」3、「 …

YOLOv5剪枝✂️| 模型剪枝实战篇

本篇博文所用代码为开源项目修改得到,且不适合基础太差的同学。 本篇文章主要讲解代码的使用方式,手把手带你实现YOLOv5模型剪枝操作。 文章目录 0. 环境准备1. 使用YOLOv5训练自己的模型2. 对训练好的模型进行稀疏训练3. 对稀疏训练后的模型进行剪枝4. 对剪枝后的网络模型微…

决策树——预剪枝和后剪枝

目录 简析 为什么要剪枝? 剪枝的基本策略 预剪枝 后剪枝 剪枝的优缺点 预剪枝的优缺点 后剪枝的优缺点 实现 数据集 剪枝前 预剪枝 分析 代码 简析 为什么要剪枝? “剪枝”是决策树学习算法对付 “过拟合” 的主要手段 可通过“剪枝”来…

网络剪枝通俗解释

论文链接:Learning Efficient Convolutional Networks through Network Slimming 视频链接:唐宇迪 基本思想 我们在模型生成通道数为[64,128,256,512]的特征图,但是这些特征图不一定都重要,我们希望能够体现特征图的主次之分&…

α、β剪枝法

在讲α、β剪枝法之前,我们先了解一下极大极小值算法;因为α、β剪枝法是为了简化极大极小值的计算而提出的。 极大极小值法 Minimax算法 又名极小化极大算法,是一种找出失败的最大可能性中的最小值的算法(即最小化对手的最大得益…

决策树的剪枝

目录 一、为什么要剪枝 二、剪枝的策略 1、预剪枝(pre-pruning) 2、后剪枝(post-pruning) 三、代码实现 1、收集、准备数据: 2、分析数据: 3、预剪枝及测试: 4、后剪枝及测试&#xff1…

决策树算法和剪枝原理

决策树算法和剪枝原理 本节我们对决策算法原理做简单的解析,帮助您理清算法思路,温故而知新。 我们知道,决策树算法是一种树形分类结构,要通过这棵树实现样本分类,就要根据 if -else 原理设置判别条件。因此您可以这…

决策树(decision tree)(二)——剪枝

决策树(decision tree)(二)——剪枝 **注:本博客为周志华《机器学习》读书笔记,虽然有一些自己的理解,但是其中仍然有大量文字摘自周老师的《机器学习》书。 决策树系列博客: 决策树(一&#x…

机器学习--决策树二(预剪枝和后剪枝)

一、什么是决策树的剪枝 对比日常生活中,环卫工人在大街上给生长茂密的树进行枝叶的修剪。在机器学习的决策树算法中,有对应的剪枝算法。将比较复杂的决策树,化简为较为简单的版本,并且不损失算法的性能。 二、为什么要剪枝 剪枝…

关于剪枝对象的分类(weights剪枝、神经元剪枝、filters剪枝、layers剪枝、channel剪枝、对channel分组剪枝、Stripe剪枝)

文章目录 剪枝对象分析:1.weights剪枝:2.神经元剪枝:3.Filters剪枝:4.通道剪枝5.Group-wise剪枝6.Stripe剪枝 剪枝对象分析: 剪枝分为结构化剪枝和非结构化剪枝,细化可分为weights剪枝、神经元剪枝、filte…

决策树——剪枝处理

剪枝处理 1:剪枝处理的原因 “剪枝”是决策树学习算法对付“过拟合”的主要手段,因此,可通过“剪枝”来一定程度避免因决策分支过多,以致于把训练集自身的一些特点当做所有数据都具有的一般性质而导致的过拟合 2:剪…

【ML】决策树--剪枝处理(预剪枝、后剪枝)

1. 剪枝(pruning)处理 首先,我们先说一下剪枝的目的——防止“过拟合”。 在决策树的学习过程中,为了保证正确性,会不断的进行划分,这样可能会导致对于训练样本能够达到一个很好的准确性,但是…

深度学习剪枝

一般来说,神经网络层数越深、参数越多,所得出的结果就越精细。但与此同时,问题也来了:越精细,意味着所消耗的计算资源也就越多。这个问题怎么破?这就要靠剪枝技术了。言下之意,把那些对输出结果…

决策树后剪枝算法(一)代价复杂度剪枝CPP

​  ​​ ​决策树后剪枝算法(一)代价复杂度剪枝CPP  ​​ ​决策树后剪枝算法(二)错误率降低剪枝REP  ​​ ​决策树后剪枝算法(三)悲观错误剪枝PEP  ​​ ​决策树后剪枝算法(四&…

机器学习-预剪枝和后剪枝

一棵完全生长的决策树会面临一个很严重的问题,即过拟合。当模型过拟合进行预测时,在测试集上的效果将会很差。因此我们需要对决策树进行剪枝, 剪掉一些枝叶,提升模型的泛化能力。 决策树的剪枝通常有两种方法,预剪枝&a…

【机器学习】Python实现决策树的预剪枝与后剪枝

决策树是一种用于分类和回归任务的非参数监督学习算法。它是一种分层树形结构,由根节点、分支、内部节点和叶节点组成。 从上图中可以看出,决策树从根节点开始,根节点没有任何传入分支。然后,根节点的传出分支为内部节点&#xff…

决策树的预剪枝与后剪枝

前言: 本次讲解参考的仍是周志华的《机器学习》,采用的是书中的样例,按照我个人的理解对其进行了详细解释,希望大家能看得懂。 1、数据集 其中{1,2,3,6,7,10,14,15,16,17}为测试集,{4,5,8,9,11,12,13}为训练集。 2、…

YOLOv5剪枝✂️ | 模型剪枝理论篇

文章目录 1. 前言2. 摘要精读3. 背景4. 本文提出的解决方式5. 通道层次稀疏性的优势6. 挑战7. 缩放因素和稀疏性惩罚8. 利用BN图层中的缩放因子9. 通道剪枝和微调10. 多通道方案11. 处理跨层连接和预激活结构12. 实验结果12.1 CIFAR-10数据集剪枝效果12.2 CIFAR-100数据集剪枝效…

决策树及决策树生成与剪枝

文章目录 1. 决策树学习2. 最优划分属性的选择2.1 信息增益 - ID32.1.1 什么是信息增益2.1.2 ID3 树中最优划分属性计算举例 2.2 信息增益率 - C4.52.3 基尼指数 - CART 3. 决策树剪枝3.1 决策树的损失函数3.2 如何进行决策树剪枝3.2.1 预剪枝3.2.2 后剪枝3.3.3 两种剪枝策略对…