贝叶斯分类器原理——学习笔记

article/2025/10/6 6:18:11

贝叶斯分类器原理

  • 简介
    • 一、逆概率推理与贝叶斯公式
      • 1、确定性推理与概率推理
      • 2、贝叶斯公式
    • 二、贝叶斯分类的原理
    • 三、概率估计
      • 1、先验概率的估计
      • 2、类条件概率的估计
    • 四、贝叶斯分类的错误率
    • 五、常用贝叶斯分类器
      • 1、最小错误率贝叶斯分类器
      • 2、最小风险贝叶斯分类器
      • 3、朴素贝叶斯分类器
    • 结语
    • 参考

简介

贝叶斯分类器作为模式识别经典算法之一,有着极其重要的地位和用途,对贝叶斯定理进行近似求解。

一、逆概率推理与贝叶斯公式

1、确定性推理与概率推理

在这里插入图片描述

2、贝叶斯公式

贝叶斯公式就是解决逆概率推理问题。从已知结果出发,判断某类情况是导致结果发生的原因的概率。贝叶斯公式:
在这里插入图片描述
表示结果A在条件Bi下分别产生的概率之和。

二、贝叶斯分类的原理

解决不确定统计分类的问题。已知每个类别的样本取得不同特征向量的概率,实现依据某个待识别样本的特征向量计算该样本属于每一个类别的概率。此时对应关系如下:

贝叶斯分类贝叶斯公式
每类样本的整体出现概率先验概率P(wi)
每个类中样本取得某个具体特征向量的概率类条件概率P(x,wi)
要计算的样本取得某一个具体特征向量时属于每一类的概率后验概率P(wi,x)

在这里插入图片描述
分类决策规则:根据计算得到的后验概率对样本进行分类

如上所述,贝叶斯分类是从结果出发找原因,因此在训练过程中先验概率和类条件概率必须已知
当先验概率未知时,可以令其概率相等,或按某一类属性在样本集中的出现频率作为先验概率,再用新获得的信息对先验概率进行修正;
当类条件概率未知时,往往需要从数据统计中估计。
因为贝叶斯分类是概率分类,因此分类决策存在错误率

三、概率估计

1、先验概率的估计

将先验概率看作常量
(1)若样本为随机抽样的样本,可以使用某一类属性在样本集中的出现频率作为先验概率:P(wi)=ni/N
(2)将所有类别看作均匀分布:P(wi)=1/c
将先验概率看作概率分布:P(wi)=∫ P(wi|x)
任意设定先验概率初值,在已知类条件概率的情况下,计算训练集中属于某一类的所有样本的后验概率,再将其数学期望用于更新后验概率。

2、类条件概率的估计

(1)参数估计:假定具有某种特定的分布形式,如正态分布、二项分布…再用已经具有类型标签的训练集对概率分布的参数进行估计
(2)非参数估计:在不知道或布加迪分布形式的基础上,直接用样本集中的信息,估计样本的概率分布情况。这种情况下得到的概率通常是一个数值模型
在类条件概率的估计中,通常使用参数估计,概率模型的训练过程就是参数估计过程。频率主义学派认为参数虽然未知,但是客观性存在的固定值,因此可以通过最优化似然函数等来确定参数值。贝叶斯学派认为参数是未观察到的随机变量,其本身也可有分部,因此假定参数服从一个先验分布,然后基于观测到的数据来计算参数的后验分布。
最常用的方法就是频率主义学派的极大似然估计法和贝叶斯学派的贝叶斯估计
(1)极大似然估计:通常是对数似然估计。(略)
(2)贝叶斯估计:
①待估计参数是Θi的先验概率分布为P(Θi);
②该类样本集xi的联合概率密度分布P(xi|Θi)是Θi的函数;
③求取Θi的后验概率P(Θi|xi);
④Θi的估计值为后验概率下的数学期望Θi=∫ Θi P(Θi|xi)
不同的类条件概率估计方法产生不同的类条件概率,导致不同的判别函数,也就产生不同的分类决策边界。

四、贝叶斯分类的错误率

分类器的错误率:分类错误概率的数学期望
例:最小错误分类器的错误率:即将样本划分到后验概率大的那一类,但样本本身不属于那一类的概率。(最小错误贝叶斯分类器见后文,常见贝叶斯分类器)
贝叶斯分类的错误率(两类)等于属于第一类w1的样本错误分类到w2的错误率加上属于第二类w2的样本错误分类到w1的概率。
在这里插入图片描述

五、常用贝叶斯分类器

1、最小错误率贝叶斯分类器

分类决策规则:将样本划分到后验概率大的一类中去。

若P(wi|x)=maxP(wj|x),则x∈wi
有最大后验概率:P(error|x)=ΣP(wj|x)-maxP(wj|x),因此最大后验概率等价于最小错误率
=>若P(x|wi)P(wi)=max[P(x|wj)P(wj)] ,则x∈wi
分类决策边界为使错误率最小的点

注意的是,最小错误率贝叶斯分类器是线性分类器,但分类决策边界不一定是线性的,分界点为后验概率相同的点。
在这里插入图片描述

2、最小风险贝叶斯分类器

决策:将待识别的样本x归类到wi中
损失λij:把真实属于wj的样本x,错误分类到wi类的损失
条件风险R(αi|x) = E[λij] = ∑λijP(wj|x)
分类决策规则:若 R(αk|x) = min R(αi|x),则x∈wk

3、朴素贝叶斯分类器

朴素贝叶斯分类器解决的是类条件概率未知的情况。
类条件概率的估计可以根据某类样本在各个维度上的特征值来估计概率分布情况,该概率分布为各个维度上的联合概率分布
朴素贝叶斯分类器就是假设各个维度完全独立地对分类结果产生影响
此时的一维概率密度估计:P(x|wi)=∏P(xk|wi)

然而,实际工程实践中,样本特征往往无法满足独立条件,一般可以采用特征分组的方法,适当考虑一部分属性间的相互依赖信息,每组包含少量相关特征,保证各组之间相互独立,从而不需要进行完全联合概率计算,又不至于忽略掉比较强的属性依赖。基于这种思想,产生了另一种分类器,即半朴素贝叶斯分类器

结语

贝叶斯分类器在模式识别领域有着极其广泛的应用,特别是在信息检索领域。
朴素贝叶斯分类器假定所有属性之间完全独立,虽然在实际应用中,假设很难成立,但应用上,朴素贝叶斯分类器又通常具有很好的性能。

参考

学习时参考北京理工大学《人工智能之模式识别》公开课
书本参考:《机器学习》周志华


http://chatgpt.dhexx.cn/article/2gHsOjww.shtml

相关文章

机器学习-贝叶斯分类器(附Python代码)

1. 贝叶斯原理 Naive Bayes 官方网址: https://scikit-learn.org/stable/modules/naive_bayes.html GitHub地址:https://github.com/gao7025/naive_bayes.git 贝叶斯分类是以贝叶斯定理为基础的一种分类算法,其主要思想为:先验…

chrome插件开发入门实战——CSDN免登陆拷贝、免关注查看

官方资料 docextensions官方chrome-extensions-samples 实战CSDN插件(V3) 功能 CSDN: 复制代码免登陆;CSDN: 免关注博主看文章;CSDN: 替换CSDN代码拷贝按钮,登陆也不用CSDN复制按…

Github实用浏览器插件推荐

文章目录 1. github树形目录插件-octotree(有付费功能)2. 快速下载github项目——GitHub加速3. 下载github中指定文件——GitZip for github4. github代码定义跳转浏览插件-Sourcegraph 某天看直播课程的时候看到这样一个界面: 然后就搜了一下…

IDEA必备插件

一、插件入口 二、IDEA必备插件 插件安装目录:C:\Users\用户名\AppData\Roaming\JetBrains\IntelliJIdea2021.3\plugins 1.Alibaba Java Coding Guidelines 推荐指数:★★★ 介绍:阿里巴巴Java编码指南 安装之后右键菜单会多出两个选项&a…

Visual Studio 2017,C++MFC免注册调用大漠插件图文教程,详细版

Visual Studio 2017,CMFC免注册调用大漠插件图文教程,详细版 前言 提示:这里可以添加本文要记录的大概内容: 有很多人都在问CMFC怎么免注册调用?其实这些都有参考但是对于新手来说,编译器对新手的不友好&#xff0c…

PHPstorm必备插件推荐

1、.env files support 对.env 文件的支持 2、 .ignore 对.ignore 文件的支持 3、 Ideolog 对 .log 文件的支持 4、 Chinese (Simplified) Language Pack / 中文语言包 官方版中文语言包 | 汉化语言包 5、 Git 对Git的支持 6、 GitToolBox 支持在文件中展示当前代码最后的…

【BurpSuite】插件之自用插件

自用burpsuite插件汇总 前言 自用的一些burpsute插件,有的是自己改着写的,有的是用别人写的,备份记录为主要目的。万一哪天环境崩了也能快速记起来要用什么插件。 重写右键执行 自己重写的一些代码,核心点是处理http请求&…

插件的使用

1、插件写法:插件通常会为 Vue 添加全局功能,添加全局方法或者属性; 添加全局资源:指令/过滤器/过渡等;通过全局 mixin 方法添加一些组件选项; 添加 Vue 实例方法,通过把它们添加到 Vue.proto…

TypechoCMS通用发布插件-【免登录版本】

Typecho是一个操作简单快速的轻量博客平台。 轻量高效:不足 400KB 的代码,就实现了完整的插件与模板机制。超低的 CPU 和内存使用率,足以发挥主机的最高性能。 先进稳定:支持 BAE/GAE/SAE 等各类云主机,即使面对突如…

【Unity插件】最多的插件合集

一、前言 ? 最近整理了一下文章,发现我分享了很多的插件,但是如果要查找某一款插件,还需要去搜索才能找到,很不方面,就想要将写过的所有的插件分享也好,教程也好,做一个汇总,然后这…

AS常用插件

1.​​adb-idea​​ 支持直接在AS面板中进行ADB操作 2.Android Code Generator 根据布局文件快速生成对应的Activity,Fragment,Adapter,Menu。 http://plugins.jetbrains.com/files/7595/screenshot_14834.png 3.CodeGlance 右边实现代…

油猴插件免费下载

安利一个黑科技,名叫"油猴子"。点击下载 Tampermonkey中文名俗称油猴,是一款免费的浏览器插件,目前最为流行的用户脚本管理器,用户可以通过油猴添加和使用脚本,而脚本是一种可以修改网页JavaScript的程序。…

超实用的浏览器插件:CSDN全站去广告

文章目录 1先下载安装为快2功能分析评测1浏览界面清爽便捷2永久免费去站内广告3神奇的C键搜索功能4 json格式化 3改进建议 最近CSDN官方出了一个插件,一起来see see有啥好玩的地方 hello,我是北京某不知名211大学计算机专业的一名大三学生(哈…

超实用的浏览器插件永久免费!!!

能让工作效率翻N倍 ,是不是心动了主要功能 个性化标签、自动换肤、自定义常用网站,同时可选择多种搜索引擎 永久免费去站内广告 一键万能框搜索 实用快捷工具(日期格式化、时间戳自动转换、在线翻译) 新增一键json转换 占内存…

【Chrome必备插件,一键提升10倍效率】新用户永久免广告,好用!

CSDN 官方出品的浏览器插件–CSDN开发者助手 终于正式更新啦!更多好玩功能等你发现,现在登录⭕️官网即可下载 CSDN浏览器助手,风格简约清爽,体积不到1M,一键极简操作万能工具,让你在工作、学习和技术开发场…

如何用WordPress免插件实现MarkDown语法支持

WordPress默认不支持MarkDown标记(不知道最新版实现没有),虽然提供了很多第三方MarkDown插件,但都无法达到满意的效果。xiaoz一直以来都是用HTML标签来写文章,虽然排版效果好,但是写起来真的很费劲&#xf…

sklearn.svm 多分类

>>> from sklearn import svmX [[0,0], [1,1],[2,2],[3,3]] Y [0, 1,2,3] clf SVC( probabilityTrue) clf.fit(X,Y) print(clf.predict([[0,0], [1,1],[2,2],[3,3]])) print(clf.predict_proba([[0,0], [1,1],[2,2],[3,3]]))打印如下: [0 1 2 3] [[ 0.1…

SVM入门(九)将SVM用于多类分类

从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件…

OpenCV中的「SVM分类器」:基本原理、函数解析和示例代码

文章目录 1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM 4. 示例代码官方示例(python)推理阶段(C版本) 5. 小结 1. 引言 …

2.1.SVM线性分类器

文章目录 1.笔记总结1.1.Small Questions1.1.1.图像xi的定义,行列的问题1.1.2.np.hstack函数1.1.3.np.random.randn()正态分布随机数函数 1.2.最优化损失函数1.2.1.寻找更好的W的方法 1.2.2梯度下降1.2.2.1.数值梯度1.2.2.2.实际应用中的梯度下降 2.SVM的…