sklearn.svm 多分类

article/2025/10/6 8:45:24
>>> from sklearn import svmX = [[0,0], [1,1],[2,2],[3,3]]
Y = [0, 1,2,3]
clf = SVC( probability=True)
clf.fit(X,Y)
print(clf.predict([[0,0], [1,1],[2,2],[3,3]]))
print(clf.predict_proba([[0,0], [1,1],[2,2],[3,3]]))打印如下:
[0 1 2 3]
[[ 0.15246393  0.23705461  0.30392427  0.30655719][ 0.2550524   0.16488868  0.25497241  0.3250865 ][ 0.32594085  0.25411181  0.16480942  0.25513792][ 0.30659971  0.30340014  0.23672633  0.15327383]]
--------------------- 
作者:m0_37870649 
来源:CSDN 
原文:https://blog.csdn.net/m0_37870649/article/details/81747614 
版权声明:本文为博主原创文章,转载请附上博文链接!

one to one 方案

clf = SVC(decision_function_shape='ovo')
clf.fit(X, Y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,decision_function_shape='ovo', degree=3, gamma='auto', kernel='rbf',max_iter=-1, probability=False, random_state=None, shrinking=True,tol=0.001, verbose=False)

one to rest

clf.decision_function_shape = "ovr"

SVC方法decision_function给每个样本中的每个类一个评分,当我们将probability设置为True之后,我们可以通过predict_proba和predict_log_proba可以对类别概率进行评估。

不均衡问题
我们可以通过class_weight和sample_weight两个关键字实现对特定类别或者特定样本的权重调整

StandardScaler类是一个用来讲数据进行归一化和标准化的类。
所谓归一化和标准化,即应用下列公式:
在这里插入图片描述
使得新的X数据集方差为1,均值为0
fit_transform方法是fit和transform的结合,fit_transform(X_train) 意思是找出X_train的和,并应用在X_train上。
这时对于X_test,我们就可以直接使用transform方法。因为此时StandardScaler已经保存了X_train的

作者:抬头看月亮
链接:https://www.jianshu.com/p/2a635d9e894d
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。


http://chatgpt.dhexx.cn/article/ipJHkGXQ.shtml

相关文章

SVM入门(九)将SVM用于多类分类

从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件…

OpenCV中的「SVM分类器」:基本原理、函数解析和示例代码

文章目录 1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM 4. 示例代码官方示例(python)推理阶段(C版本) 5. 小结 1. 引言 …

2.1.SVM线性分类器

文章目录 1.笔记总结1.1.Small Questions1.1.1.图像xi的定义,行列的问题1.1.2.np.hstack函数1.1.3.np.random.randn()正态分布随机数函数 1.2.最优化损失函数1.2.1.寻找更好的W的方法 1.2.2梯度下降1.2.2.1.数值梯度1.2.2.2.实际应用中的梯度下降 2.SVM的…

svm多分类器详解

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star,留言,一起学习进步 SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题&#…

SVM学习(六):将SVM用于多类分类

从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件…

分类算法SVM(支持向量机)

支持向量机(Support Vector Machine ,SVM)的主要思想是:建立一个最优决策超平面,使得该平面两侧距离该平面最近的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力。对于一个多维的样本集,系统随…

SVM分类算法

1.基本概念 支持向量机(SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法,在引入了核方法之后SVM也可以用来解决非线性问题。 实际应用中一般要解决觉得是多分类问…

SVM分类器详解

SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995…

Svm实现多分类

机器学习---Svm实现多分类详解 Svm实现多类分类原理代码实现训练的图片 Svm实现多类分类原理 1.支持向量机分类算法最初只用于解决二分类问题,缺乏处理多分类问题的能力。后来随着需求的变化,需要svm处理多分类分为。目前构造多分类支持向 量机分类器的…

SVM学习(二):线性分类器

1.线性分类器概念 线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念。用一个二维空间里仅有两类样本的分类问题来举个小例子。如图所示: C1和C2是要区分的两个类别&#x…

机器学习笔记之(5)——SVM分类器

本博客为SVM分类器的学习笔记~由于仅仅是自学的笔记,大部分内容来自参考书籍以及个人理解,还请广大读者多多赐教 主要参考资料如下: 《机器学习实战》《Python机器学习》《机器学习Python实践》《Python机器学习算法》《Python大战机器学习》…

机器学习之SVM分类器介绍——核函数、SVM分类器的使用

系类文章目录 机器学习算法——KD树算法介绍以及案例介绍 机器学习的一些常见算法介绍【线性回归,岭回归,套索回归,弹性网络】 文章目录 一、SVM支持向量机介绍 1.1、SVM介绍 1.2、几种核函数简介 a、sigmoid核函数 b、非线性SVM与核函…

SVM分类器(matlab)

源自:https://blog.csdn.net/lwwangfang/article/details/52351715 支持向量机(Support Vector Machine,SVM),可以完成对数据的分类,包括线性可分情况和线性不可分情况。1、线性可分 首先,对于SVM来说&…

线性分类器(SVM,softmax)

目录 导包和处理数据 数据预处理--减平均值和把偏置并入权重 SVM naive版 向量版 Softmax navie版 向量版 线性分类器--采用SGD算法 SVM版线性分类 Softmax版线性分类 使用验证集调试学习率和正则化系数 画出结果 测试准确率 可视化权重 值得注意的地方 赋值 ran…

SVM多分类的两种方式

以下内容参考:https://www.cnblogs.com/CheeseZH/p/5265959.html http://blog.csdn.net/rainylove1/article/details/32101113 王正海《基于决策树多分类支持向量机岩性波谱分类》 SVM本身是一个二值分类器,SVM算法最初是为二值分类问题设计的&#xff0…

使用SVM分类器进行图像多分类

ResNet backbone SVM分类器 对于样本较为均衡小型数据集,SVM作为分类器的效果与MLP的效果相近。 从经验上看,对于样本不均衡的大型数据集,MLP的效果强于SVM。 本博客在自己的小型数据集上进行实验,本来使用MLP已经达到很好的效果…

SVM分类器原理详解

第一层、了解SVM 支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化&#xff0c…

【CV-Learning】线性分类器(SVM基础)

数据集介绍(本文所用) CIFAR10数据集 包含5w张训练样本、1w张测试样本,分为飞机、汽车、鸟、猫、鹿、狗、蛙、马、船、卡车十个类别,图像均为彩色图像,其大小为32*32。 图像类型(像素表示) 二…

支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界) 作者:July 。致谢:pluskid、白石、JerryLead。说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年1月。 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和…

[机器学习] 支持向量机通俗导论节选(一)

本文转载自:http://blog.csdn.net/v_july_v/article/details/7624837 支持向量机通俗导论(理解SVM的三层境界) 作者: July、pluskid ; 致谢:白石、J erryLead 出处:结构之法算法之道 blog …