resnet 18 实现

article/2025/11/10 15:21:28

一、残差块

让我们聚焦于神经网络局部:如图7.6.2所示,假设我们的原始输入为x,而希望学出的理想映射为f(x)(作为 图7.6.2上方激活函数的输入)。 图7.6.2左图虚线框中的部分需要直接拟合出该映射f(x),而右图虚线框中的部分则需要拟合出残差映射f(x)-x。 残差映射在现实中往往更容易优化。 以本节开头提到的恒等映射作为我们希望学出的理想映射f(x),我们只需将 图7.6.2中右图虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么f(x)即为恒等映射。 实际中,当理想映射f(x)极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。 图7.6.2右图是ResNet的基础架构–残差块(residual block)。 在残差块中,输入可通过跨层数据线路更快地向前传播。
在这里插入图片描述
ResNet沿用了VGG完整的3x3卷积层设计。 残差块里首先有2个有相同输出通道数的3x3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1x1卷积层来将输入变换成需要的形状后再做相加运算。 残差块的实现如下:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Residual(nn.Module):  #@savedef __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

如 图7.6.3所示,此代码生成两种类型的网络: 一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。 另一种是当use_1x1conv=True时,添加通过1x1卷积调整通道和分辨率。
在这里插入图片描述
下面我们来查看输入和输出形状一致的情况。

blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

在这里插入图片描述
我们也可以在增加输出通道数的同时,减半输出的高和宽。

blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape

在这里插入图片描述

二、ResNet模型

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7x7卷积层后,接步幅为2的3x3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。

def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk

接着在ResNet加入所有残差块,这里每个模块使用2个残差块。

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。

net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的1x1卷积层)。 加上第一个7x7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。 图7.6.4描述了完整的ResNet-18。

在这里插入图片描述
在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。 在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)

在这里插入图片描述

三、训练模型

同之前一样,我们在Fashion-MNIST数据集上训练ResNet。

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述


http://chatgpt.dhexx.cn/article/wYVrmfEd.shtml

相关文章

ResNet18复现

ResNet18的网络架构图 首先将网络分为四层(layers),每层有两个模块组成,除了第一层是两个普通的残差块组成,其它三层有一个普通的残差块和下采样的卷积块组成。输入图像为3x224x224格式,经过卷积池化后为64…

ResNet18和ResNet50的keras实现

注意低版本的keras对一些包的引用方式跟高版本有区别,注意看章节1的代码注释部分。 TensorFlow跟Keras也有版本的对应关系,https://master–floydhub-docs.netlify.app/guides/environments/。 例如: 1.ResNet18 ResNet18 from tensorfl…

【学习笔记】resnet-18 pytorch源代码解读

目录 ResNet-18网络结构简图ResNet-18的代码结构残差块结构ResNet类构造方法和forward_make_layer方法 完整的ResNet-18结构图 使用的resnet-18的源代码来源于 PyTorch1.0, torchvision0.2.2 ResNet-18网络结构简图 ResNet(Residual Neural Network&a…

ResNet18详细原理(含tensorflow版源码)

ResNet18原理 ResNet18是一个经典的深度卷积神经网络模型,由微软亚洲研究院提出,用于参加2015年的ImageNet图像分类比赛。ResNet18的名称来源于网络中包含的18个卷积层。 ResNet18的基本结构如下: 输入层:接收大小为224x224的RG…

resnet18

前言 在前篇vgg16之后,无法成功训练vgg16,发现是自己电脑可用的显存太低了,遂放弃。 在2015 ILSVRC&COCO比赛中,何恺明团队提出的Resnet网络斩获第一,这是一个经典的网络。李沐说过,如果要学习一个CNN网…

ResNet18网络的具体构成

一、基础 RetNet网络的基础是残差块。 以下是原始论文所给出的最基础的残差块。后续可以对单残差块进行处理,如加入池化,批量化归一等各种操作。 二、最基本的的ResNet18 ResNet18的基本含义是,网络的基本架构是ResNet,网络的深…

【神经网络】(10) Resnet18、34 残差网络复现,附python完整代码

各位同学好,今天和大家分享一下 TensorFlow 深度学习中如何搭载 Resnet18 和 Resnet34 残差神经网络,残差网络利用 shotcut 的方法成功解决了网络退化的问题,在训练集和校验集上,都证明了的更深的网络错误率越小。 论文中给出的具…

Resnet 18网络模型

1. 残差网络:(Resnet) 残差块: 让我们聚焦于神经网络局部:如图左侧所示,假设我们的原始输入为x,而希望学出的理想映射为f(x)(作为上方激活函数的输入)。左图虚线框中…

【ResNet】Pytorch从零构建ResNet18

Pytorch从零构建ResNet 第一章 从零构建ResNet18 第二章 从零构建ResNet50 文章目录 Pytorch从零构建ResNet前言一、ResNet是什么?1. 残差学习2. ResNet具体结构 二、ResNet分步骤实现三、完整例子测试总结 前言 ResNet 目前是应用很广的网络基础框架,所…

HTML+CSS 简单的顶部导航栏菜单制作

导航栏的制作: 技术要求: CSSHTML各类标签 实现目的: 制作导航栏菜单 代码分析: 基本样式清除无序列原点删除下划线删除文字默认居中a标签设置块级元素伪类选择器对a状态修饰 分步实现: 分三栏布局:…

WEB前端(7)—— 简单的 HTML+CSS 导航栏案例

适合每个新手的导航栏&#xff1a; 代码与运行效果如图&#xff1a; <!DOCTYPE html> <html> <head><meta charset"utf-8"><title>导航栏</title><style type"text/css">ul{/*设置导航栏的框框*/margin: 30px…

CSS — 导航栏篇(一)

Navigation Bar Navigation Bar 是什么&#xff1f;这就是每个网站都会有的导航栏&#xff0c;本文将会带你接触导航栏的世界。首先我们需要了解导航栏的作用——它能快速帮助用户进行需求选择。一个清晰的导航栏能让用户第一时间了解网站的基本模块功能&#xff0c;而且作为网…

CSS + HTML导航栏效果

今天写了一个导航栏&#xff0c;需要的效果如下&#xff1a; 实现的代码思路如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>导航栏</title><style type"text/css&qu…

html+css创建侧边导航栏

效果&#xff1a; 代码&#xff1a; .left{position: fixed;width: 250px;height: 2000px;background-color: rgb(100, 93, 93);float: left;text-align: center; } .nav a{display: block;width: 247px;height: 70px;background-color: rgb(100, 93, 93);color: rgb(254, 254…

HTML5+CSS3制作底部导航栏

目录 前言 一、底部导航栏示例图 二、HTML框架 1.一号盒子 2.二号盒子 总结 ​​​​​​ 前言 在日常的网上冲浪中&#xff0c;我们常常在网页最底部&#xff0c;看到一大堆链接&#xff0c;非常整齐&#xff0c;一目了然&#xff0c;那么是如何实现的呢&#xff1f;..…

网页制作之侧边导航栏(只用HTML实现)

话不多说&#xff0c;上代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" con…

CSS【导航栏】

导航栏链接列表 作为标准的HTML基础一个导航栏是必须的。在我们的例子中我们将建立一个标准的HTML列表导航栏。导航条基本上是一个链接列表&#xff0c;所以使用 <ul> 和 <li>元素非常有意义&#xff1a; <!DOCTYPE html><html><head><meta…

html中网页导航栏设置

以下内容是摘抄博客&#xff1a;https://www.runoob.com/css/css-navbar.html 设计导航窗口在左侧的显示如下&#xff1a; 代码部分则如下&#xff1a; <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>菜鸟教程(runoo…

html左侧导航栏右侧显示内容

效果图 代码 复制下来直接运行就可以 <!doctype html> <html lang "en"><head><meta charset "UTF-8"><meta name "viewport"content "widthdevice-width, user-scalableno, initial-scale1.0, maximum-s…

导航栏的HTML的布局方式

1.利用浮动完成布局 以小米导航栏为例 <style>* {padding: 0;margin: 0;/* 通配符全选&#xff0c;取消内外边距的小缝隙 // 不建议使用通配符 */}header {width: 100%;background-color: #333333;/* 设置背景 */}div {width: 1226px;height: 40px;margin: auto;/* 设…