ResNet18详细原理(含tensorflow版源码)

article/2025/11/10 15:21:29

ResNet18原理

        ResNet18是一个经典的深度卷积神经网络模型,由微软亚洲研究院提出,用于参加2015年的ImageNet图像分类比赛。ResNet18的名称来源于网络中包含的18个卷积层。

ResNet18的基本结构如下:

  • 输入层:接收大小为224x224的RGB图像。
  • 卷积层:共4个卷积层,每个卷积层使用3x3的卷积核和ReLU激活函数,提取图像的局部特征。
  • 残差块:共8个残差块,每个残差块由两个卷积层和一条跳跃连接构成,用于解决深度卷积神经网络中梯度消失和梯度爆炸问题。
  • 全局平均池化层:对特征图进行全局平均池化,将特征图转化为一维

    向量。

  • 全连接层:包含一个大小为1000的全连接层,用于分类输出。
  • 输出层:使用softmax激活函数,生成1000个类别的概率分布。

 

           ResNet18的主要特点是引入了残差块(Residual Block)的概念,用于解决深度卷积神经网络中梯度消失和梯度爆炸问题。在残差块中,跳跃连接(Shortcut Connection)可以将输入直接连接到输出,使得网络可以学习到残差信息,从而更好地进行特征提取和处理。

        在训练过程中,ResNet18一般采用基于随机梯度下降(Stochastic Gradient Descent,SGD)的反向传播算法,通过最小化交叉熵损失函数来优化模型参数。在训练过程中,可以使用数据增强、正则化、dropout等技术来提高模型的泛化能力和鲁棒性。

        总的来说,ResNet18是一个非常经典和有效的深度卷积神经网络模型,具有良好的特征提取和分类能力,可以应用于图像分类、目标检测等计算机视觉任务。

ResNet18源码(tensorflow版)


import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers,datasets,modelsdef main():(train_x,train_y),(test_x,test_y) = datasets.cifar10.load_data()train_x = train_x.reshape([-1,32,32,3]) / 255.0test_x = test_x.reshape([-1,32,32,3]) / 255.0inputs = keras.Input((32,32,3))output = ResNet18(inputs)model = models.Model(inputs,output)model.summary()model.compile(loss = keras.losses.SparseCategoricalCrossentropy(),optimizer=keras.optimizers.Adam(0.01),metrics=['accuracy'])model.fit(train_x,train_y,batch_size=128,epochs=10)score = model.evaluate(test_x,test_y)print("loss:",score[0])print("acc:",score[1])passdef ConvCall(x,filtten,xx,yy,strides = (1,1)):x = layers.Conv2D(filtten,(xx,yy),strides=strides,padding='same')(x)x = layers.BatchNormalization()(x)return xdef ResNetblock(input,filtten,strides = (1,1)):x = ConvCall(input,filtten,3,3,strides=strides)x = layers.Activation("relu")(x)x = ConvCall(x,filtten,3,3,strides=(1,1))if strides != (1,1):residual = ConvCall(input,filtten,1,1,strides=strides)else:residual = inputx = x + residualx = layers.Activation("relu")(x)return xdef ResNet18(inputs):x = ConvCall(inputs, 64, 3, 3, strides=(1, 1))x = layers.Activation('relu')(x)x = ResNetblock(x, 64, strides=(1, 1))x = ResNetblock(x, 64, strides=(1, 1))x = ResNetblock(x, 128, strides=(2, 2))x = ResNetblock(x, 128, strides=(1, 1))x = ResNetblock(x, 256, strides=(2, 2))x = ResNetblock(x, 256, strides=(1, 1))x = ResNetblock(x, 512, strides=(2, 2))x = ResNetblock(x, 512, strides=(1, 1))x = layers.GlobalAveragePooling2D()(x)  # 全局平均池化output = layers.Dense(10, "softmax")(x)return outputif __name__ == '__main__':main()

训练10个epoch的效果

 

 


http://chatgpt.dhexx.cn/article/JuADWUbV.shtml

相关文章

resnet18

前言 在前篇vgg16之后,无法成功训练vgg16,发现是自己电脑可用的显存太低了,遂放弃。 在2015 ILSVRC&COCO比赛中,何恺明团队提出的Resnet网络斩获第一,这是一个经典的网络。李沐说过,如果要学习一个CNN网…

ResNet18网络的具体构成

一、基础 RetNet网络的基础是残差块。 以下是原始论文所给出的最基础的残差块。后续可以对单残差块进行处理,如加入池化,批量化归一等各种操作。 二、最基本的的ResNet18 ResNet18的基本含义是,网络的基本架构是ResNet,网络的深…

【神经网络】(10) Resnet18、34 残差网络复现,附python完整代码

各位同学好,今天和大家分享一下 TensorFlow 深度学习中如何搭载 Resnet18 和 Resnet34 残差神经网络,残差网络利用 shotcut 的方法成功解决了网络退化的问题,在训练集和校验集上,都证明了的更深的网络错误率越小。 论文中给出的具…

Resnet 18网络模型

1. 残差网络:(Resnet) 残差块: 让我们聚焦于神经网络局部:如图左侧所示,假设我们的原始输入为x,而希望学出的理想映射为f(x)(作为上方激活函数的输入)。左图虚线框中…

【ResNet】Pytorch从零构建ResNet18

Pytorch从零构建ResNet 第一章 从零构建ResNet18 第二章 从零构建ResNet50 文章目录 Pytorch从零构建ResNet前言一、ResNet是什么?1. 残差学习2. ResNet具体结构 二、ResNet分步骤实现三、完整例子测试总结 前言 ResNet 目前是应用很广的网络基础框架,所…

HTML+CSS 简单的顶部导航栏菜单制作

导航栏的制作: 技术要求: CSSHTML各类标签 实现目的: 制作导航栏菜单 代码分析: 基本样式清除无序列原点删除下划线删除文字默认居中a标签设置块级元素伪类选择器对a状态修饰 分步实现: 分三栏布局:…

WEB前端(7)—— 简单的 HTML+CSS 导航栏案例

适合每个新手的导航栏&#xff1a; 代码与运行效果如图&#xff1a; <!DOCTYPE html> <html> <head><meta charset"utf-8"><title>导航栏</title><style type"text/css">ul{/*设置导航栏的框框*/margin: 30px…

CSS — 导航栏篇(一)

Navigation Bar Navigation Bar 是什么&#xff1f;这就是每个网站都会有的导航栏&#xff0c;本文将会带你接触导航栏的世界。首先我们需要了解导航栏的作用——它能快速帮助用户进行需求选择。一个清晰的导航栏能让用户第一时间了解网站的基本模块功能&#xff0c;而且作为网…

CSS + HTML导航栏效果

今天写了一个导航栏&#xff0c;需要的效果如下&#xff1a; 实现的代码思路如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>导航栏</title><style type"text/css&qu…

html+css创建侧边导航栏

效果&#xff1a; 代码&#xff1a; .left{position: fixed;width: 250px;height: 2000px;background-color: rgb(100, 93, 93);float: left;text-align: center; } .nav a{display: block;width: 247px;height: 70px;background-color: rgb(100, 93, 93);color: rgb(254, 254…

HTML5+CSS3制作底部导航栏

目录 前言 一、底部导航栏示例图 二、HTML框架 1.一号盒子 2.二号盒子 总结 ​​​​​​ 前言 在日常的网上冲浪中&#xff0c;我们常常在网页最底部&#xff0c;看到一大堆链接&#xff0c;非常整齐&#xff0c;一目了然&#xff0c;那么是如何实现的呢&#xff1f;..…

网页制作之侧边导航栏(只用HTML实现)

话不多说&#xff0c;上代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" con…

CSS【导航栏】

导航栏链接列表 作为标准的HTML基础一个导航栏是必须的。在我们的例子中我们将建立一个标准的HTML列表导航栏。导航条基本上是一个链接列表&#xff0c;所以使用 <ul> 和 <li>元素非常有意义&#xff1a; <!DOCTYPE html><html><head><meta…

html中网页导航栏设置

以下内容是摘抄博客&#xff1a;https://www.runoob.com/css/css-navbar.html 设计导航窗口在左侧的显示如下&#xff1a; 代码部分则如下&#xff1a; <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>菜鸟教程(runoo…

html左侧导航栏右侧显示内容

效果图 代码 复制下来直接运行就可以 <!doctype html> <html lang "en"><head><meta charset "UTF-8"><meta name "viewport"content "widthdevice-width, user-scalableno, initial-scale1.0, maximum-s…

导航栏的HTML的布局方式

1.利用浮动完成布局 以小米导航栏为例 <style>* {padding: 0;margin: 0;/* 通配符全选&#xff0c;取消内外边距的小缝隙 // 不建议使用通配符 */}header {width: 100%;background-color: #333333;/* 设置背景 */}div {width: 1226px;height: 40px;margin: auto;/* 设…

html里制作简单导航栏

今天简单的做了一下网页里的导航栏。 效果如下&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html> <head><meta charset"utf-8"><title>实验3</title><style type"text/css">ul{/*设置导航栏的框框*/margi…

html中关于侧边导航栏和导航栏的编写

侧边导航栏 <style>.box{width: 50px;height: 50px;background-color: #483957;transition: width .5s,background-color .2s;}.box:hover{background-color: #004FCB;width: 200px;cursor: pointer;}.a1{position: fixed;right: 40px;top: 200px;float: right;}</st…

Html顶部导航栏实现

顶部导航nav栏实现&#xff08;包括一级菜单&#xff0c;二级菜单&#xff09; 实现效果&#xff1a; 代码如下~ Html部分&#xff1a; <!doctype html> <html> <head> <meta charset"utf-8"> <title>顶部导航栏</title> <…

CSS+HTML 顶部导航栏实现

导航栏的实现、固定顶部导航栏、二级菜单实现 效果图&#xff1a; 2018/11/16更新&#xff1a; 最近在使用这个导航栏的时候&#xff0c;发现页面在放大和缩小的情况下&#xff0c;导航栏的布局和显示都有些小问题&#xff0c;所以重新改了一下css部分的代码&#xff0c;重新贴…