Python基于OpenCV的工作疲劳检测系统[源码&UI界面&部署教程]

article/2025/9/23 19:40:51

1.图片演示

2.png

3.jpg

2.视频演示

[项目分享]Python基于OpenCV的实时疲劳检测[源码&演示视频&部署教程]_哔哩哔哩_bilibili

3.检测方法

1)方法
与用于计算眨眼的传统图像处理方法不同,该方法通常涉及以下几种组合:

1、眼睛定位。
2、阈值找到眼睛的白色。
3、确定眼睛的“白色”区域是否消失了一段时间(表示眨眼)。
相反,眼睛长宽比是一种更为优雅的解决方案,它涉及基于眼睛面部轮廓之间的距离之比的非常简单的计算。

这种眨眼检测方法快速,高效且易于实现。

(2)眼睛纵横比
我们可以应用脸部界标检测来定位脸部重要区域,包括眼睛,眉毛,鼻子,耳朵和嘴巴
这也意味着我们可以通过了解特定面部部分的索引来提取特定面部结构:
在眨眼检测方面,我们只对两套面部结构感兴趣:眼睛。
每只眼睛都由6 (x,y)坐标表示,从坐标的左角开始(就像您在看那个人一样),然后沿该区域的其余部分顺时针旋转:
4.png

基于此图像,我们应该取消关键点:
这些坐标的宽度和高度之间存在关系。
根据Soukupová和Čech在2016年的论文《使用面部地标进行实时眼睛眨眼检测》的工作,我们可以得出一个反映这种关系的方程,称为眼睛纵横比(EAR):
5.png

def eye_aspect_ratio(eye):# 计算距离,竖直的A = dist.euclidean(eye[1], eye[5])B = dist.euclidean(eye[2], eye[4])# 计算距离,水平的C = dist.euclidean(eye[0], eye[3])# ear值ear = (A + B) / (2.0 * C)return ear

其中p1,…,p6是2D面部界标位置。

该方程的分子计算垂直眼界标之间的距离,而分母计算水平眼界标之间的距离,对分母进行适当加权,因为只有一组水平点,但有两组垂直点。

(3)眨眼检测标准
睁开眼睛时眼睛的纵横比大约是恒定的,但是当眨眼时眼睛的纵横比会迅速降至零。
使用这个简单的方程式,我们可以避免使用图像处理技术,而只需依靠眼睛界标距离的比率来确定一个人是否在眨眼。
为了更清楚地说明这一点,请看下图:
6.png
图: 左上:当眼睛睁开时,眼睛界标的可视化。右上:闭上眼睛时的眼睛地标。底部:绘制随时间变化的眼睛纵横比。眼睛纵横比的下降表示眨眼

def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coords

在左上角,我们的眼睛完全张开-此处的眼睛长宽比会很大(r),并且随着时间的推移会相对保持恒定。
但是,一旦眨眼(右上角),眼睛的宽高比就会急剧下降,接近零。
在底部图中绘出了眼纵横比随时间的视频剪辑的曲线图。如我们所见,眼睛的纵横比是恒定的,然后迅速下降到接近零,然后再次增加,表明已经发生了一次眨眼。
在确定视频流中是否发生眨眼时,我们需要计算眼睛的宽高比。

# 设置判断参数
EYE_AR_THRESH = 0.3  # ear小于0.3判断为闭眼
EYE_AR_CONSEC_FRAMES = 3  # 连续三帧ear都小于0.3判断为眨眼# 初始化计数器
COUNTER = 0
TOTAL = 0

如果眼睛的宽高比下降到某个阈值以下,然后又上升到该阈值以上,那么我们将注册“眨眼”- EYE_AR_THRESH 是此阈值。我们将其默认设置为0. 3 因为这对我的应用程序最有效,但是您可能需要针对自己的应用程序进行调整。

# 遍历每一帧
while True:# 预处理frame = vs.read()[1]if frame is None:break(h, w) = frame.shape[:2]width=1200r = width / float(w)dim = (width, int(h * r))frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 检测人脸rects = detector(gray, 0)# 遍历每一个检测到的人脸for rect in rects:# 获取坐标shape = predictor(gray, rect)shape = shape_to_np(shape)# 分别计算ear值leftEye = shape[lStart:lEnd]rightEye = shape[rStart:rEnd]leftEAR = eye_aspect_ratio(leftEye)rightEAR = eye_aspect_ratio(rightEye)# 算一个平均的ear = (leftEAR + rightEAR) / 2.0# 绘制眼睛区域leftEyeHull = cv2.convexHull(leftEye)rightEyeHull = cv2.convexHull(rightEye)cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)# 检查是否满足阈值if ear < EYE_AR_THRESH:COUNTER += 1else:# 如果连续几帧都是闭眼的,总数算一次if COUNTER >= EYE_AR_CONSEC_FRAMES:TOTAL += 1# 重置COUNTER = 0# 显示cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.imshow("Frame", frame)key = cv2.waitKey(10) & 0xFFif key == 27:breakvs.release()
cv2.destroyAllWindows()

然后我们有一个重要的常数, EYE_AR_CONSEC_FRAME —此值设置为 3 表示连续三个帧的眼睛长宽比小于EYE_AR_THRESH 必须进行眨眼才能注册眨眼。
同样,根据流水线的帧处理吞吐率,您可能需要为自己的实现提高或降低此数字。
第44和45行初始化两个计数器。柜台 是眼睛长宽比小于的连续帧的总数 EYE_AR_THRESH 尽管 全部的 是脚本运行期间发生的总闪烁次数。
7.png

4.打哈欠检测算法

受该博客的启发,基于MAR算法的哈欠检测,利用Dlib提取嘴部的6个特征点,通过这6个特征点的坐标(51、59、53、57的纵坐标和49、55的横坐标)来计算打哈欠时嘴巴的张开程度。当一个人说话时,点51、59、53、57的纵坐标差值增大,从而使MAR值迅速增大,反之,当一个人闭上嘴巴时,MAR值迅速减小。

嘴部主要取六个参考点,如下图:
5.png
计算公式:
6.png
通过公式计算MAR来判断是否张嘴及张嘴时间,从而确定驾驶员是否在打哈欠。阈值应经过大量实验,能够与正常说话或哼歌区分开来。为提高判断的准确度,采用双阈值法进行哈欠检测,即对内轮廓进行检测:结合张口度与张口时间进行判断。Yawn为打哈欠的帧数,N为1 min内总帧数,设双阈值法哈欠检测的阈值为10%,当打哈欠频率Freq>10%时,则认为驾驶员打了1个深度哈欠或者至少连续2个浅哈欠,此时系统进行疲劳提醒。

6.代码实现:

疲劳检测,检测眼睛和嘴巴的开合程度

from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np  # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
import math
import time
from threading import Threaddef mouth_aspect_ratio(mouth):  # 嘴部A = np.linalg.norm(mouth[2] - mouth[10])  # 51, 59B = np.linalg.norm(mouth[4] - mouth[8])  # 53, 57C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55mar = (A + B) / (2.0 * C)return mar

完整源码&环境部署视频教程&自定义UI界面
参考博客《Python基于OpenCV的工作疲劳检测系统[源码&UI界面&部署教程]》

7.参考文献


[1] 汪明明,林小竹.基于OpenCV人眼定位的人脸检测方法[D].北京石油化工学院.2012(12).

[2] 傅亚煌,黄鸣宇.基于眼动特性的机动车驾驶疲劳系统[J].电脑与信息技术.2013(2).

[3] 王奕直,周凌霄,孔万增.基于Adaboost的疲劳驾驶眨眼检测[D].杭州电子科技大学学报.2013(8).

[4] 张旭,李亚利,陈晨,王生进,丁晓青.嵌入式驾驶员状态检测算法的实现与优化[J].自动化学报.2012(12).

[5] 赵钟.驾驶员疲劳检测方法研究及嵌入式实现[D]. 大连海事大学.2010(6).

[6] 徐淑峰,孙炜,赵峰,张忠.Adaboost人脸检测算法在嵌入式平台上的优化与实现[D].上海交通大学微电子学院.2008(6).

[7] 牛慧萍.基于DSP的人眼状态信息检测系统的研究和设计.[D].沈阳理工大学.2010(3).

[8] 郑玉铎.田杨萌.靳薇.基于Adaboost 和ASM 算法的人眼定位.[J] .北京信息科技大学学报.2013(6).

[9] 郭纯宏.基于嵌入式的人眼信息检测系统研究.[D].沈阳理工大学.2011(3).

[10] 王洪涛.驾驶疲劳测评方法研究及其DSP实现.[D].武汉理工大学.2007(5).

[11] 向本科.基于人眼检测的驾驶员疲劳检测研究.[D].西南大学.2010(5).

[12] 常瑜亮.基于DSP的疲劳驾驶检测系统硬件设计与实现. [D].沈阳理工大学.2010(3).

[13] 李文磊.基于DSP的疲劳驾驶实时监测系统研究.[D] .南京理工大学.2007(6).


http://chatgpt.dhexx.cn/article/uyyq2MtM.shtml

相关文章

Opencv之疲劳检测

项目要求 在一段视频中&#xff0c;通过检测人眨眼的次数来判断他的疲劳程度。 代码实现 1、导入工具包 from scipy.spatial import distance as dist import numpy as np import dlib import cv22、对脸上的部位进行定义 在关键点定位的官方文档中&#xff0c;提取68个关…

人脸识别-驾驶疲劳检测(1) 眨眼检测

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、背景 &#xff08;1&#xff09;环境搭建 &#xff08;2&#xff09;下载开源数据集 &#xff08;3&#xff09;视觉疲劳检测原理 二、代码示例 三、效…

人脸检测高级:疲劳检测

今天我们实现疲劳检测。 如果眼睛已经闭上了一段时间&#xff0c;我们会认为他们开始打瞌睡并发出警报来唤醒他们并引起他们的注意。我们测试一段视频来展示效果。同时代码中保留开启摄像头的的代码&#xff0c;取消注释即可使用。 使用 OpenCV 构建犯困检测器 要开始我们的实…

数字图像处理课程设计-疲劳检测系统

文章目录 数字图像处理课程设计-疲劳检测系统前言一、课程设计任务二、设计框图三、准备工作四、任务流程&#xff14;.&#xff11;视频预处理4.2图片分割 五、结果六、项目总结 数字图像处理课程设计-疲劳检测系统 前言 此系统基于MATLAB设计,核心思想是PERCLOS算法. 参考文…

MATLAB的疲劳检测系统

一、课题介绍 本设计针对现有逐帧眼睛定位方法计算量大&#xff0c;速度慢的缺点&#xff0c;提出一种用于疲劳驾驶实时监测的眼睛定位方法&#xff0c;该方法能够在保证眼睛定位准确性的同时&#xff0c;减少人脸定位的计算量&#xff0c;从而提高图像处理速度&#xff0c;实现…

毕业设计 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.2 打哈欠检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业…

利用opencv 做一个疲劳检测系统(2)

文章目录 杂谈实现步骤核心算法交互界面界面代码检测效果源代码 杂谈 最近发现视力下降严重&#xff0c; 可能跟我的过度用眼有关&#xff0c;于是想着能不能做一个检测用眼疲劳的&#xff0c;灵感来自特斯拉的疲劳检测系统。 效果如下&#xff1a; 实现步骤 实现核心算法制…

基于Matlab深度学习的驾驶员疲劳检测系统

随着城市化进程不断加快,中国汽车的需求 量和保有量也急剧上升。 截至 2020 年 9 月,中国 汽车保有量达到了 2.75 亿辆,随着车辆保有量的 增加,交通事故的发生率也在逐年上升。2017 年交通事故共计 20.3 万起,因车祸死亡人数 6.3 万 人,2018 年交通事故较 2017 年上升 20.6%,20…

基于MATLAB的疲劳检测系统

基于MATLAB的疲劳检测系统 一、课题介绍 随着汽车工业的不断发展,随之而来的社会问题也愈加严重。交通事故给人们造成巨大伤害的同时,也给社会带来沉重的负担和影响。由于疲劳驾驶是引起交通事故的一个主要原因。因此,研究一种合理有效、实时准确检测驾驶员疲劳驾驶的非接触式车…

基于图像分割的疲劳检测方法研究

问题&#xff1a; 随着社会的不断进步,汽车已经成为了当今世界拥有主宰地位的交通工具。然而汽车数量的上升同时也导致交通事故数量猛增,由司机疲劳驾驶引起的交通事故的发生频率更是不断攀升。疲劳的复杂性引起了各个学科的研究者广泛关注&#xff0c;传统的疲劳评估方法不仅需…

疲劳检测实验报告

疲劳检测实验报告 邢益玮 201930101151 2021/1/13 &#xff08;重度拖延症了&#xff0c;内容又有点多&#xff0c;学长和老师不好意思了&#x1f64f;&#x1f64f;&#x1f64f;&#xff09; 文章目录 疲劳检测实验报告前言一、最初的尝试——dlib库1.1 信息收集1.2 为Anac…

基于MATLAB的疲劳检测

在疲劳检测算法中&#xff0c;个人感觉最好的算法是 Dlib 这个库可以实现人脸的关键点的检测&#xff0c;有了人眼睛的点位&#xff0c;便可以检测眨眼之类的频率来进行人眼识别&#xff1b; 但是在matlab中调用dlip需要比较复杂的操做&#xff0c;有兴趣的可以网上搜索做法&am…

MATLAB疲劳检测系统

目录 摘要 I Abstract II 1 绪论 1 1.1 研究背景及意义 1 1.2 国内外疲劳驾驶研究现状 2 1.3本文的主要研究内容及组织结构 3 2 人脸检测与定位技术 4 2.1人脸检测与定位技术概述 4 2.1.1基于图像的人脸检测方法 4 2.1.2基于特征的人脸检测方法 5 2.2 Adaboost算法介绍 6 2.2.1…

python疲劳检测

疲劳驾驶检测 结合眼睛的闭合状态和嘴巴闭合状态&#xff0c;综合判断驾驶人员的疲劳状况。python编写&#xff0c;tensorflow&#xff0c;opencv和dlib实现人脸的检测和特征点提取。 效果图&#xff1a; 效果视频: python opencv 疲劳驾驶检测 项目代码下载&#xff1a; pyt…

疲劳检测(一)Landmark + HeadPose

数据集 1&#xff09;Drazy 数据集&#xff1a;红外&#xff0c;包含多种用于疲劳检测的数据&#xff0c;(有电极) 14*3*10min get http://www.drozy.ulg.ac.be/ 2&#xff09;NTHU 驾驶员疲劳检测数据集 http://cv.cs.nthu.edu.tw/php/callforpaper/datasets/DDD/ 3&am…

26.疲劳检测

目录 1 项目介绍 2 代码实现 2.1 导入库 2.2 定义68个关键点 2.3 定义eye_aspect_ratio() 2.4 定义参数 2.5 定义阈值 2.6 定义次数 2.7 创建检测器 2.8 获取左眼与右眼的起始点与终止点 2.9 读取视频 2.10 定义shape_to_np() 2.11 遍历每一帧 2.11…

Dlib模型之驾驶员疲劳检测一(眨眼)

目录 序目的技术背景 正文&#xff08;1&#xff09;环境搭建&#xff08;2&#xff09;下载开源数据集&#xff08;3&#xff09;视觉疲劳检测原理&#xff08;4&#xff09;主要代码思路&#xff08;5&#xff09;运行效果 序 目的 经查阅相关文献&#xff0c;疲劳在人体面…

Python人脸检测实战之疲劳检测

本文主要介绍了实现疲劳检测&#xff1a;如果眼睛已经闭上了一段时间&#xff0c;我们会认为他们开始打瞌睡并发出警报来唤醒他们并引起他们的注意&#xff0c;感兴趣的朋友可以了解一下。 今天我们实现疲劳检测。 如果眼睛已经闭上了一段时间&#xff0c;我们会认为他们开始打…

计算机视觉项目实战-驾驶员疲劳检测

&#x1f60a;&#x1f60a;&#x1f60a;欢迎来到本博客&#x1f60a;&#x1f60a;&#x1f60a; 本次博客内容将继续讲解关于OpenCV的相关知识 &#x1f389;作者简介&#xff1a;⭐️⭐️⭐️目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉深度学…

【毕业设计】深度学习疲劳检测 驾驶行为检测 - python opencv cnn

文章目录 0 前言1 课题背景2 相关技术2.1 Dlib人脸识别库2.2 疲劳检测算法2.3 YOLOV5算法 3 效果展示3.1 眨眼3.2 打哈欠3.3 使用手机检测3.4 抽烟检测3.5 喝水检测 4 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目…