人脸识别-驾驶疲劳检测(1) 眨眼检测

article/2025/9/23 14:36:58

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

前言

一、背景

(1)环境搭建

(2)下载开源数据集

(3)视觉疲劳检测原理

二、代码示例

三、效果演示


前言

经过查阅文献,基于人脸表面特征的疲劳检测,主要分为三个部分,打哈欠、眨眼、点头。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。
 

一、背景

(1)环境搭建

题主使用的环境配置:python3.9.13+cuda11.3+anaconda3   

所需库:

pip install numpy

pip install matplotlib

pip installl imutils

pip install scipy

pip install dlib

其中 dlib下载方法(本文仅提供py3.9版本下载)

首先安装

pip install cmake

pip install boost

下载dlib-19.23.0-cp39-cp39-win_amd64.whl

下载后在对应文件夹下执行(这个大家应该都会吧(我自己是放在环境目录的backages文件夹里))

pip install dlib-19.23.0-cp39-cp39-win_amd64.whl

其他版本dlib中下载

(2)下载开源数据集

shape_predictor_68_face_landmarks.dat

(3)视觉疲劳检测原理

因为人在疲倦时大概会产生两种状态: 眨眼:正常人的眼睛每分钟大约要眨动10-15次,

每次眨眼大概0.2-0.4秒,如果疲倦时眨眼次数会增多,速度也会变慢。打哈欠:此时嘴

会长大而且会保持一定的状态。因此检测人是否疲劳可以从眼睛的开合度,眨眼频率,以

及嘴巴张合程度来判断一个人是否疲劳。

检测工具

dlib :一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用。

眨眼计算原理:

(1) 计算眼睛的宽高比

基本原理:计算 眼睛长宽比 Eye Aspect Ratio,EAR.当人眼睁开时,EAR在某个值上下波动,当人眼闭合时,EAR迅速下降,理论上会接近于零,当时人脸检测模型还没有这么精确。所以我们认为当EAR低于某个阈值时,眼睛处于闭合状态。为检测眨眼次数,需要设置同一次眨眼的连续帧数。眨眼速度比较快,一般1~3帧就完成了眨眼动作。两个阈值都要根据实际情况设置。
20191211162451238.png

(2)当前帧两双眼睛宽高比与前一帧的差值的绝对值(EAR)大于0.2,则认为是疲劳

(68点landmark中可以看到37-42为左眼,43-48为右眼)

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2N1bmd1ZGFmYQ==,size_16,color_FFFFFF,t_70#pic_center

右眼开合度可以通过以下公式得到(左眼同理):

2019121016443063.png#pic_center

代码思路

第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器

第二步:使用dlib.shape_predictor获得脸部特征位置检测器

第三步:分别获取左右眼面部标志的索引

第四步:打开cv2 本地摄像头

第五步:从视频流进行循环,读取图片,并对图片做维度扩大,并进灰度化

第六步:使用detector(gray, 0) 进行脸部位置检测

第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息

第八步:将脸部特征信息转换为数组array的格式

第九步:提取左眼和右眼坐标

第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EAR

第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作

第十二步:进行画图操作,用矩形框标注人脸

第十三步:分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动

第十四步:进行画图操作,68个特征点标识

第十五步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示

第十六步:统计总眨眼次数大于50次屏幕显示睡着。
 

二、代码示例

# -*- coding: utf-8 -*-
# import the necessary packages
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np  # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2def eye_aspect_ratio(eye):# 垂直眼标志(X,Y)坐标A = dist.euclidean(eye[1], eye[5])  # 计算两个集合之间的欧式距离B = dist.euclidean(eye[2], eye[4])# 计算水平之间的欧几里得距离# 水平眼标志(X,Y)坐标C = dist.euclidean(eye[0], eye[3])# 眼睛长宽比的计算ear = (A + B) / (2.0 * C)# 返回眼睛的长宽比return ear# 定义两个常数
# 眼睛长宽比
# 闪烁阈值
EYE_AR_THRESH = 0.2
EYE_AR_CONSEC_FRAMES = 3
# 初始化帧计数器和眨眼总数
COUNTER = 0
TOTAL = 0# 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测
print("[INFO] loading facial landmark predictor...")
# 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器
detector = dlib.get_frontal_face_detector()
# 第二步:使用dlib.shape_predictor获得脸部特征位置检测器
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')# 第三步:分别获取左右眼面部标志的索引
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]# 第四步:打开cv2 本地摄像头
cap = cv2.VideoCapture(0)# 从视频流循环帧
while True:# 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化ret, frame = cap.read()frame = imutils.resize(frame, width=720)gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 第六步:使用detector(gray, 0) 进行脸部位置检测rects = detector(gray, 0)# 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息for rect in rects:shape = predictor(gray, rect)# 第八步:将脸部特征信息转换为数组array的格式shape = face_utils.shape_to_np(shape)# 第九步:提取左眼和右眼坐标leftEye = shape[lStart:lEnd]rightEye = shape[rStart:rEnd]# 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EARleftEAR = eye_aspect_ratio(leftEye)rightEAR = eye_aspect_ratio(rightEye)ear = (leftEAR + rightEAR) / 2.0# 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作leftEyeHull = cv2.convexHull(leftEye)rightEyeHull = cv2.convexHull(rightEye)cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)# 第十二步:进行画图操作,用矩形框标注人脸left = rect.left()top = rect.top()right = rect.right()bottom = rect.bottom()cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 3)'''分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动'''# 第十三步:循环,满足条件的,眨眼次数+1if ear < EYE_AR_THRESH:  # 眼睛长宽比:0.2COUNTER += 1else:# 如果连续3次都小于阈值,则表示进行了一次眨眼活动if COUNTER >= EYE_AR_CONSEC_FRAMES:  # 阈值:3TOTAL += 1# 重置眼帧计数器COUNTER = 0# 第十四步:进行画图操作,68个特征点标识for (x, y) in shape:cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)# 第十五步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "Blinks: {}".format(TOTAL), (150, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "COUNTER: {}".format(COUNTER), (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "EAR: {:.2f}".format(ear), (450, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)print('眼睛实时长宽比:{:.2f} '.format(ear))if TOTAL >= 50:cv2.putText(frame, "SLEEP!!!", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)cv2.putText(frame, "Press 'q': Quit", (20, 500), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)# 窗口显示 show with opencvcv2.imshow("Frame", frame)# if the `q` key was pressed, break from the loopif cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头 release camera
cap.release()
# do a bit of cleanup
cv2.destroyAllWindows()

三、效果演示

fcb3273493ee46f5971256d033c27f74.png

5364ca45d0cc4c9888a125eac5d2bf49.png


http://chatgpt.dhexx.cn/article/M30huq73.shtml

相关文章

人脸检测高级:疲劳检测

今天我们实现疲劳检测。 如果眼睛已经闭上了一段时间&#xff0c;我们会认为他们开始打瞌睡并发出警报来唤醒他们并引起他们的注意。我们测试一段视频来展示效果。同时代码中保留开启摄像头的的代码&#xff0c;取消注释即可使用。 使用 OpenCV 构建犯困检测器 要开始我们的实…

数字图像处理课程设计-疲劳检测系统

文章目录 数字图像处理课程设计-疲劳检测系统前言一、课程设计任务二、设计框图三、准备工作四、任务流程&#xff14;.&#xff11;视频预处理4.2图片分割 五、结果六、项目总结 数字图像处理课程设计-疲劳检测系统 前言 此系统基于MATLAB设计,核心思想是PERCLOS算法. 参考文…

MATLAB的疲劳检测系统

一、课题介绍 本设计针对现有逐帧眼睛定位方法计算量大&#xff0c;速度慢的缺点&#xff0c;提出一种用于疲劳驾驶实时监测的眼睛定位方法&#xff0c;该方法能够在保证眼睛定位准确性的同时&#xff0c;减少人脸定位的计算量&#xff0c;从而提高图像处理速度&#xff0c;实现…

毕业设计 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.2 打哈欠检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业…

利用opencv 做一个疲劳检测系统(2)

文章目录 杂谈实现步骤核心算法交互界面界面代码检测效果源代码 杂谈 最近发现视力下降严重&#xff0c; 可能跟我的过度用眼有关&#xff0c;于是想着能不能做一个检测用眼疲劳的&#xff0c;灵感来自特斯拉的疲劳检测系统。 效果如下&#xff1a; 实现步骤 实现核心算法制…

基于Matlab深度学习的驾驶员疲劳检测系统

随着城市化进程不断加快,中国汽车的需求 量和保有量也急剧上升。 截至 2020 年 9 月,中国 汽车保有量达到了 2.75 亿辆,随着车辆保有量的 增加,交通事故的发生率也在逐年上升。2017 年交通事故共计 20.3 万起,因车祸死亡人数 6.3 万 人,2018 年交通事故较 2017 年上升 20.6%,20…

基于MATLAB的疲劳检测系统

基于MATLAB的疲劳检测系统 一、课题介绍 随着汽车工业的不断发展,随之而来的社会问题也愈加严重。交通事故给人们造成巨大伤害的同时,也给社会带来沉重的负担和影响。由于疲劳驾驶是引起交通事故的一个主要原因。因此,研究一种合理有效、实时准确检测驾驶员疲劳驾驶的非接触式车…

基于图像分割的疲劳检测方法研究

问题&#xff1a; 随着社会的不断进步,汽车已经成为了当今世界拥有主宰地位的交通工具。然而汽车数量的上升同时也导致交通事故数量猛增,由司机疲劳驾驶引起的交通事故的发生频率更是不断攀升。疲劳的复杂性引起了各个学科的研究者广泛关注&#xff0c;传统的疲劳评估方法不仅需…

疲劳检测实验报告

疲劳检测实验报告 邢益玮 201930101151 2021/1/13 &#xff08;重度拖延症了&#xff0c;内容又有点多&#xff0c;学长和老师不好意思了&#x1f64f;&#x1f64f;&#x1f64f;&#xff09; 文章目录 疲劳检测实验报告前言一、最初的尝试——dlib库1.1 信息收集1.2 为Anac…

基于MATLAB的疲劳检测

在疲劳检测算法中&#xff0c;个人感觉最好的算法是 Dlib 这个库可以实现人脸的关键点的检测&#xff0c;有了人眼睛的点位&#xff0c;便可以检测眨眼之类的频率来进行人眼识别&#xff1b; 但是在matlab中调用dlip需要比较复杂的操做&#xff0c;有兴趣的可以网上搜索做法&am…

MATLAB疲劳检测系统

目录 摘要 I Abstract II 1 绪论 1 1.1 研究背景及意义 1 1.2 国内外疲劳驾驶研究现状 2 1.3本文的主要研究内容及组织结构 3 2 人脸检测与定位技术 4 2.1人脸检测与定位技术概述 4 2.1.1基于图像的人脸检测方法 4 2.1.2基于特征的人脸检测方法 5 2.2 Adaboost算法介绍 6 2.2.1…

python疲劳检测

疲劳驾驶检测 结合眼睛的闭合状态和嘴巴闭合状态&#xff0c;综合判断驾驶人员的疲劳状况。python编写&#xff0c;tensorflow&#xff0c;opencv和dlib实现人脸的检测和特征点提取。 效果图&#xff1a; 效果视频: python opencv 疲劳驾驶检测 项目代码下载&#xff1a; pyt…

疲劳检测(一)Landmark + HeadPose

数据集 1&#xff09;Drazy 数据集&#xff1a;红外&#xff0c;包含多种用于疲劳检测的数据&#xff0c;(有电极) 14*3*10min get http://www.drozy.ulg.ac.be/ 2&#xff09;NTHU 驾驶员疲劳检测数据集 http://cv.cs.nthu.edu.tw/php/callforpaper/datasets/DDD/ 3&am…

26.疲劳检测

目录 1 项目介绍 2 代码实现 2.1 导入库 2.2 定义68个关键点 2.3 定义eye_aspect_ratio() 2.4 定义参数 2.5 定义阈值 2.6 定义次数 2.7 创建检测器 2.8 获取左眼与右眼的起始点与终止点 2.9 读取视频 2.10 定义shape_to_np() 2.11 遍历每一帧 2.11…

Dlib模型之驾驶员疲劳检测一(眨眼)

目录 序目的技术背景 正文&#xff08;1&#xff09;环境搭建&#xff08;2&#xff09;下载开源数据集&#xff08;3&#xff09;视觉疲劳检测原理&#xff08;4&#xff09;主要代码思路&#xff08;5&#xff09;运行效果 序 目的 经查阅相关文献&#xff0c;疲劳在人体面…

Python人脸检测实战之疲劳检测

本文主要介绍了实现疲劳检测&#xff1a;如果眼睛已经闭上了一段时间&#xff0c;我们会认为他们开始打瞌睡并发出警报来唤醒他们并引起他们的注意&#xff0c;感兴趣的朋友可以了解一下。 今天我们实现疲劳检测。 如果眼睛已经闭上了一段时间&#xff0c;我们会认为他们开始打…

计算机视觉项目实战-驾驶员疲劳检测

&#x1f60a;&#x1f60a;&#x1f60a;欢迎来到本博客&#x1f60a;&#x1f60a;&#x1f60a; 本次博客内容将继续讲解关于OpenCV的相关知识 &#x1f389;作者简介&#xff1a;⭐️⭐️⭐️目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉深度学…

【毕业设计】深度学习疲劳检测 驾驶行为检测 - python opencv cnn

文章目录 0 前言1 课题背景2 相关技术2.1 Dlib人脸识别库2.2 疲劳检测算法2.3 YOLOV5算法 3 效果展示3.1 眨眼3.2 打哈欠3.3 使用手机检测3.4 抽烟检测3.5 喝水检测 4 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目…

Pandas和Numpy:常见函数参数inplace的作用

1.inplace参数的作用 pandas中&#xff0c;包括numpy中很多方法都设置了inplace参数。该参数的主要作用是指示是否在本地数据上做更改&#xff0c;其只能接受bool型参数&#xff0c;即 True和False. 具体示例如下&#xff1a; data为原始数据。接下来用dataframe.drop()删除Ti…

编译inplace_abn

出现以上问题 1、检查pytorch版本&#xff0c;一般1.5以上 2、检查cuda版本&#xff0c;一般10.1以上 3、检查环境变量设置 linux&#xff1a;export -p 重点检查 PATH 、LD_LIBRARY_PATH 不能重复设置变量&#xff0c;将重复的删掉 unset LANG 是将LANG删掉 declare -x LANG是…